
Home

Home

Welcome to the parsley wiki!

Structure

The Wiki is structured into a few broad sections:

HOME 1

FAQ 3

CHEATSHEET 6

UNDERSTANDING THE API 13

PARSER COMBINATOR TUTORIAL 100

GETTING STARTED 223
The two most important sections here are Understanding the API and Parser Combinator Tutorial. The

former is a structured look at how to use various parts of the API, with examples and patterns of use; and

the latter is a more ground-up guide on how to use parser combinators, and the patterns that describe

best-practice. The Cheatsheet may help get a quick overview on the key combinators to be aware of when

1

Home

using parsley. The FAQ outlines some common problems you might encounter, how to interpret them,

and how to resolve them.

It is possible to download this Wiki in PDF form, though this is not guaranteed to be formatted nicely!

Contributing

Users are welcome to contribute to this wiki themselves. Unlike GitHub's wiki, the source can be found at

https://github.com/j-mie6/parsley/tree/staging/5.0/docs, in Markdown files augmented using the Laika

framework. This allows for some extra non-standard directives to be used. Have a look at other wiki pages

to get a sense for how things should work. Feel free to then make a PR with your changes #.

2

https://github.com/j-mie6/parsley/tree/staging/5.0/docs
https://typelevel.org/Laika/

FAQ

Frequently Asked Questions

What is the deal with "lazy" vs "strict" positions?

In parsley-4.x.y and up, combinators are no longer totally lazy and adopt the idea of lazy and strict

arguments. In general, all combinators have strict receivers.

• A strict argument/receiver indicates that the combinator intends for that argument to be parsed

"immediately" without a possibility of consuming input before-hand

• A lazy argument/receiver indicates that the combinator acknowledges that input may be consumed by

another argument (or the combinator itself) before the lazy argument will be executed.

Why is this important? Recursive parsers are implemented in Parsley with "knot-tying" using lazy val.

When a parser appears recursively in its own definition, it needs to be kept lazy otherwise it will be

evaluated during its own definition, leading to an infinite loop. Lazy positions in combinators indicate

probably safe places for recursion to occur. On the other hand, the absence of input-consumption before

a strict position probably indicates that recursion in that position will result in a left-recursive parser: the

necessary condition for left-recursion is that a recursive call is made without having consumed input

since the last recursive call. Technically, this is known as unguarded (by input consumption) recursion, with

correct parsers making use of guarded recursion. This is not bullet-proof:

• Strict positions sometimes occur in combinators where they should be lazy but cannot be due to

language limitations: choice, the zipped syntax, etc all fall victim to this.

• Lazy positions suggest the previously executed parsers could have consumed input, but it is not

guaranteed that they actually do. As an example, LazyParsley.unary_~ can be used to make a parser

lazy in an otherwise strict position, but doesn't itself consume input, so care must still be taken to ensure

there is input consumed by previous arguments!

Note that a strict parser in a lazy position is still lazy!

For an example, lazy val q = (p <~ ':', q).zipped(f) would be problematic because the recursive

call is used naked in a totally strict combinator (zipped). There are two ways to fix this problem:

1. Reshuffle the surrounding context to move it into a lazy position: lazy val q = (p, ':' ~>

q).zipped(f) would be fine, since the right-hand side of ~> is a lazy position guarded by the input

consumption of ':'.

2. Use LazyParsley.unary_~ to introduce laziness:

import parsley.Parsley.LazyParsley
lazy val q = (p <~ ':', ~q).zipped(f)

3

FAQ

Here, the unary_~ is used to just make q lazy: this is simply defined as unit ~> q, which places q into a

unguarded lazy position, since unit does not consume input. The guardedness in this case comes from

p <~ ':', which is guaranteed to consume a : on success.

Frequently Encountered Problems

My parser seems to infinite loop and doesn't run, even with the debug combinator

This sounds like you've run into the above issue with left-recursion. This means that a parser appears as the

first possible route of exploration from itself:

lazy val bad = bad ~> ...
lazy val badExpr = Add.lift(badExpr, '+' ~> badExpr) | number
lazy val goodExpr = atomic((number <~ '+', goodExpr).zipped(Add)) | number

The first two parsers are both examples of left-recursive parsers, which are not allowed in Parsley. The

third is caused by the above problem of a genuine recursive call in a strict position, and can be fixed with

unary_~ or by rearranging the '+' parser as above:

lazy val goodExpr = atomic((number, '+' ~> goodExpr).zipped(Add)) | number
lazy val goodExpr = atomic((number <~ '+', ~goodExpr).zipped(Add)) | number

My parser seems to infinite loop and the debug combinator shows it spinning forever

As above you've probably made a left-recursive parser, but this time hidden the bad recursion inside an

unguarded lazy position:

import parsley.Parsley.LazyParsley
lazy val badExpr = Add.lift(~badExpr, '+' ~> badExpr) | number

Perhaps you tried to fix the above bad parser using unary_~ even though its an unsafe recursive position?

My parser throws a BadLazinessException, what gives!

This error is thrown by the Parsley compiler when Scala would otherwise have thrown a

NullPointerException during what's known as "let-finding". This is the very first phase of the pipeline,

and, since Parsley does not use null anywhere in the front-end, its a symptom of a parser having been

demanded before its actually been defined. So what does that mean for you, the user?

Well, unfortunately, Scala doesn't give us any indication about which parser is at fault (and the Java 14

Helpful NPEs don't help much either). But here are the possible causes:

4

FAQ

1. A parser references one that has been defined below it and it hasn't been marked as lazy val

2. A combinator doesn't have the right laziness characteristics (conventionally, Parsley defines all its

combinators arguments using by-name parameters and lazy vals for those that appear multiple times

in the body)

3. Be careful: builder combinators to abstract position tracking (as per the Parsley guide) also will require

the same care as (2)

Now, the solution to (1) is simple, just either add a lazy val, or reorder the grammar clauses so

that there is no forward referencing. Similarly, (2) is simple to fix by adding in the right laziness to

the parameter. However, because Parsley is careful to make as much as possible lazy (be careful of

parsley.syntax.zipped.{Zipped2, Zipped3}, however, neither of them are lazy!) you may find that

you can define an entire parser without ever running into this problem, even if nothing is marked lazy:

lucky you! My advice is to try and keep things ordered nicely, or mark everything as lazy; of course, laziness

will have a slight runtime penalty, so its worth seeing how much of the laziness you can eliminate by just

reordering.

You may be helped out by Scala here, either by an error about "crossed-initialisation" or a warning about

"Reference to uninitialized value". If you see either of these, check the order and laziness of the parsers

concerned!

5

Cheatsheet

Parser Combinator Cheatsheet

Until you're more comfortable using parser combinators and have a sense for how to piece things together,

the sheer choice can be daunting. This page is designed to help bridge this gap by bringing attention to

some of the more common and useful combinators, as well as a few common idioms for getting stuff done.

Quick Documentation

This section is designed to give a quick reference for some of the most common combinators, their types

as well as their use.

Basic Combinators

These are the basic combinators for combining smaller parsers into bigger parsers, or adjusting their

results. These combinators are sometimes lazy in their arguments, which is denoted here by the regular

by-name (=>A) syntax. If an argument is strict, it means that it will be parsed immediately on entry to the

combinator before any input can be consumed.

Combinator Type Use Pronounciation

pure(_) A => Parsley[A] return a value of

type A without parsing

anything.

"pure"

_ *> _ _ ~> _ (Parsley[A],

=>Parsley[B]) =>

Parsley[B]

sequence two parsers,

returning the result of

the second.

"then"

_ <* _ _ <~ _ (Parsley[A],

=>Parsley[B]) =>

Parsley[A]

sequence two parsers,

returning the result of

the first.

"then discard"

.map() (Parsley[A], A =>

B) => Parsley[B]

use a function to

change the result of a

parser.

"map"

_ <#> _ (A => B,

Parsley[A]) =>

Parsley[B]

use a function to

change the result of

a parser. (Requires

import

parsley.extension.HaskellStyleMap)

"map"

6

Cheatsheet

Combinator Type Use Pronounciation

_ #> _ _.as(_) (Parsley[A], B) =>

Parsley[B]

replace the result of

a parser with a fixed

value.

"as"

liftN(_, .., _) ((A1, A2, .., An)

=> B, Parsley[A1],

=>Parsley[A2], ..,

=>Parsley[An]) =>

Parsley[B]

use a function to

combine the results of

n parsers, sequencing

them all together.

"lift n"

_ <|> _ _ | _ (Parsley[A],

=>Parsley[A]) =>

Parsley[A]

try one parser, and if it

fails without consuming

input try the second

"or"

atomic(_) Parsley[A] =>

Parsley[A]

perform a parser, but

roll-back any consumed

input if it fails, use in

conjunction with <|>.

"atomic"

lookAhead(_) Parsley[A] =>

Parsley[A]

execute a parser, and

roll-back any consumed

input if it succeeded.

"look-ahead"

notFollowedBy(_) Parsley[A] =>

Parsley[Unit]

execute a parser,

never consuming input:

succeed only if the

parser fails.

"not followed by"

empty Parsley[Nothing] fails when executed. "empty"

Character Combinators

These combinators, found in parsley.character are useful for dealing with actually consuming input.

Combinator Type Use

char(_) Char => Parsley[Char] Reading a single specific

character. That character is

returned.

7

Cheatsheet

Combinator Type Use

string(_) String => Parsley[String] Reading a single specific string.

That string is returned.

satisfy(_) (Char => Boolean) =>

Parsley[Char]

Read any single character for

which the provided function

returns true. The character

returned is the one read.

oneOf(_*) Char* => Parsley[Char] Read any one of the provided

characters (which are varargs).

The character returned is the

one read.

noneOf(_*) Char* => Parsley[Char] Read any single character that

is not one of the provided

characters. The character

returned is the one read.

Lifty Combinators

These combinators can all be implemented in terms of lift2 (see liftN above), but are considered useful

enough to have their own syntax and name. These combinators are lazy in their arguments (but not

receivers),denoted here by the regular by-name (=>A) syntax. As such, the receiver is parsed first and may

consume input, which means the argument may contain a recursive position (and must therefore be lazy).

Combinator Type Use Pronounciation

_ <~> _ (Parsley[A],

=>Parsley[B]) =>

Parsley[(A, B)]

combine the results

using (_, _)
"zip"

_ <*> _ (Parsley[A => B],

=>Parsley[A]) =>

Parsley[B]

combine the results

using (f, x) => f(x).

"ap"

_ <**> _ (Parsley[A],

=>Parsley[A => B])

=> Parsley[B]

combine the results

using (x, f) => f(x).

"reverse ap"

8

Cheatsheet

Combinator Type Use Pronounciation

_ <::> _ (Parsley[A],

=>Parsley[List[A]])

=> Parsley[List[A]]

combine the results

using _ :: _.

"cons"

Composite Combinators

These combinators tackle more common complex tasks. In particular many and some are very important.

They are all found in parsley.combinator. These combinators are sometimes lazy in their arguments,

which is denoted here by the regular by-name (=>A) syntax. Care should be taken with the combinators with

variadic arguments, as they are totally strict, even in normally lazy positions: LazyParsley.unary_~ can

be used to restore laziness in these positions.

Combinator Type Use

many(_) Parsley[A] =>

Parsley[List[A]]

run one parser many times until

it fails, collecting all the results in

a list.

some(_) Parsley[A] =>

Parsley[List[A]]

as above, but the parser must

succeed at least once.

eof Parsley[Unit] check if there is any remaining

input: it will succeed if there is

none.

choice(_*) Parsley[A]* => Parsley[A] try each of the given parsers in

turn until one succeeds: uses <|

>.

option(_) Parsley[A] =>

Parsley[Option[A]]

try a parser, if it succeeds wrap

the result in Some, and if it fails

without consuming input return

None.

optional(_) Parsley[A] =>

Parsley[Unit]

optionally parse something (but

if it fails, it must not consume

input).

9

Cheatsheet

Combinator Type Use

sepBy1(_, _) (Parsley[A], =>Parsley[?])

=> Parsley[List[A]]

parse one thing separated

by another, collecting all the

results. Something like comma-

separated arguments in a

function call.

endBy1(_, _) (Parsley[A], =>Parsley[?])

=> Parsley[List[A]]

same as above, but the sequence

must be ended by the separator

again. Something like semi-colon

separated statements in C-like

languages.

sepEndBy1(_, _) (Parsley[A], =>Parsley[?])

=> Parsley[List[A]]

same as above, but the

terminal separator is optional.

Something like semi-colon

separated statements in Scala.

Building Values and ASTs

This section covers the common ways you might build a result value or Abstract Syntax Tree (AST) with

your parsers.

The most primitive combinators for reading input all have a tendency to return the thing they parsed, be it

a single character or a string. For the most part, this is not the useful output you'd like your parser to have.

Transforming a single value with map

The quickest way to change the result of a parser is by using .map or the #> combinator (see the above

quick documentation). This is really useful for changing the result of a single parser, but provides no way

of combining multiple.

import parsley.Parsley, Parsley.some
import parsley.character.digit

case class Num(n: Int)

// A preferred method is to use `digit.foldLeft1` to avoid creating a List.
val digits: Parsley[List[Char]] = some(digit)
// `map` here is using a function of type `List[Char] => Int`
val int: Parsley[Int] = digits.map(_.mkString.toInt) // equivalently
 `digits.map(_.mkString).map(_.toInt)
// `map` here is being used to wrap the `Int` in the `Num` class
val num: Parsley[Num] = int.map(Num.apply)

10

Cheatsheet

But when you need to combine the results of two parsers more options open up.

Combining multiple results with lift, <::>, and friends

Let's suppose we want to rule out leading zeros in the above parser. We'll need to read one non-zero digit

before we read zero or more digits. In this case, we want the first digit to be added to the list of remaining

digits. This task is quite common, so the <::> combinator is designed specially for it:

import parsley.Parsley, Parsley.many
import parsley.character.{digit, oneOf, char}

case class Num(n: Int)

val nonzero = oneOf('1' to '9')

// <::> adds the leading non-zero char onto the other digits
val digits: Parsley[List[Char]] = nonzero <::> many(digit)
// Using #> here to handle the plain ol' zero case
val int: Parsley[Int] = char('0') #> 0 | digits.map(_.mkString.toInt)
val num: Parsley[Num] = int.map(Num.apply)

But more generally, we could reach for the lift functions:

import parsley.Parsley, Parsley.many
import parsley.character.{digit, oneOf, char}
import parsley.lift.lift2

case class Num(n: Int)

val nonzero = oneOf('1' to '9')

val digits: Parsley[List[Char]] = lift2[Char, List[Char], List[Char]](_
 :: _, nonzero, many(digit))
// Using #> here to handle the plain ol' zero case
val int: Parsley[Int] = char('0') #> 0 | digits.map(_.mkString.toInt)
val num: Parsley[Num] = int.map(Num.apply)

Sadly, to do this, it's sometimes necessary to specify all the types, in particular for anonymous functions

that can have many possible type-instantiations, like _ :: _. The reason is that Scala doesn't infer the types

of arguments, only return values, so on its own _ :: _ has no known type. As such, the fix is to let other

type-instantations help give the argument types (as above) or to specify the types in the function manually:

lift2((c: Char, cs: List[Char]) => c :: cs, nonzero, many(digit))

11

Cheatsheet

Notice that this didn't seem to be a problem with map. This is because the function is type-checked after

the receiver of the method: it gets given the right argument type straight away. Parsley has a syntax for

leveraging this property:

import parsley.syntax.zipped.zippedSyntax2

(nonzero, many(digit)).zipped(_ :: _)


The zipped syntax, unlike the liftN combinators or lift syntax, is not lazy in any of its arguments,

so care may be needed to use LazyParsley.unary_~ to restore laziness to those arguments that

need it.

Use this form of lifting when type-inference fails you. Otherwise, for clarity, use a regular liftN, or the

syntactic sugar for it:

import parsley.syntax.lift.{liftSyntax1, liftSyntax2}

val charCons = (c: Char, cs: List[Char]) => c :: cs

charCons.lift(nonzero, many(digit))
Num.apply.lift(int)

The lift functions work all the way up to 22 arguments (which is the Scala 2 limit on function arguments).

The same goes for the zipped syntax and lift syntax. Don't forget about <::> as well as its friends <~>,

<*>, and <**>! They all provide a concise way of combining things in (common) special cases.


A note for Haskellers

In Scala, curried application is not as favoured as it is in Haskell for performance reasons. The classic

f <$> p <*> .. <*> z pattern that is common in Haskell is unfavourable compared to the scala

liftN(f, p, .., z). For the latter, f is uncurried, which is the norm, and so it is almost always

more efficient. Both <*> and <**> should be, therefore, used sparingly in idiomatic parsley code

instead of liberally like in Haskell.

However, it goes without saying that lift2[A => B, A, B]((f, x) => f(x), pf, px) is no

more efficient than pf <*> px so the latter is favoured for that use case!

12

Understanding the API

Understanding the API

Main Classes and Packages

In parsley, everything resides within the parsley package, and the major entry point is parsley.Parsley.

There are a few modules of note:

• parsley.Parsley: contains some of the basic and primitive combinators (at least those that aren't

methods on parsers).

• parsley.combinator: contains handy combinators, this should be your first port of call when you want

to do something but are not sure a combinator exists for it. At the very least, the eof combinator is very

common.

• parsley.character: contains a variety of combinators which deal with characters, key ones include

char, satisfy and string.

• parsley.syntax: contains the very useful implicit conversion combinators. In particular, importing

charLift and stringLift allows you write character and string literals as if they were parsers

themselves. There are also implicit classes here which extend functions of any arity with a

corresponding .lift method, instead of using the liftN functions.

• parsley.expr: contains the machinery needed to generate expression parsers for you based, at its

simplest, on a table of operators in order of precedence. This is well worth a look (this is covered in detail

in Building Expression Parsers.

• parsley.token: contains a bunch of functionality for performing common lexing tasks, which is very

configurable. These parsers may also be optimised for performance.

Using parsley.token for Lexing

Unlike Haskell libraries like megaparsec and parsec, parsley does not tie the lexing functionality to the

Haskell Report, instead supporting a superset of the functionality. The functionality is provided to the user

by Lexer, and this must be provided an value of type LexicalDesc, which provides all the configuration

necessary to describe the language and make the parsers.

13

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Parsley.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/combinator$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/character$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/syntax$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/expr$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/Lexer.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/LexicalDesc.html

`parsley.Parsley`

Parsley (parsley.Parsley)

All parsers have type Parsley, which has many methods (combinators) for composing parsers together.

The companion object also contains some primitive combinators and parsers.


The Scaladoc for this page can be found at parsley.Parsley (class) and parsley.Parsley (object).

Class Parsley

The Parsley class is the value class responsible for representing parsers. It has methods largely grouped

into the following categories:

• Methods to execute a parser, like parse.

• Methods to alter the result of a parser, like map, as, void, and span.

• Methods to sequence multiple parsers, like flatMap, zip, <~, and ~>.

• Methods to compose parsers in alternation, like orElse, |, and <+>.

• Methods to filter the results of parsers, like filter, collect, and mapFilter.

• Methods to repeat a parser and collapse the results, like foldLeft, reduceRight, and so on.

• Special methods to help direct parsley, like impure, overflows, and force.

Running Parsers

The parse method runs a parser with some given input. The type signature has an additional

Err parameter, with an implicit requirement for ErrorBuilder[Err]. This is discussed in

parsley.errors.ErrorBuilder, but for the purposes of basic use, you can assume that Scala will

automatically infer this type to be String, for which an ErrorBuilder[String] does implicitly exist.

By importing parsley.io.*, another parseFromFile method is added to Parsley, which works similarly,

but loads the input from a file first. In future versions of parsley, this import will no longer be needed, and

this will be an overloading of parse.

14

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Parsley.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Parsley$.html

`parsley.Parsley`

Altering Results

The results of an individual parser can be altered using map or combinators derived from it, such as as or

void. Note that the #> combinator is a symbolic alias for as, though as is now recommended.


Note that, whilst as can be implemented using map, it is actually implemented with ~> and pure,

which allows it to be better optimised: if a result is not needed, parsley will ensure it is not even

generated to begin with.

The span combinator is special: it allows for the result of a parser to be discarded and instead the input

consumed in the process of parsing is returned instead. This can be used to avoid constructing strings again

after parsing.

Composing Parsers

Some combinators allow for multiple parsers to be composed together to form a new one. This comes in

two forms: sequencing them one after another and combining their results in some way, or combining them

in parallel as two independent choices.

Sequencing

The zip combinator is the most permissive way of combining two parsers together whilst retaining both

of their results; p zip q will parse p, then q and then return a pair of their results. The symbolic version of

zip is called <~>. When both results are not needed, ~> and <~ point towards a result to keep, and discard

the other.

Combinators like <*>, <**> and <::> perform a similar role to zip, but combine the two results depending

on the specific subtypes of the arguments. Both <*> and <**> perform function application, and <::> adds

the result of the first parser onto a list returned by the second. These are all more specific versions of the

parsley.lift.* combinators, but are often useful in practice.

The flatMap combinator is another way of sequencing two parsers, but where the second depends

on the result of the first. In parsley, this operation is very expensive, and it (and its derived flatten

combinator) should be avoided. One way of avoiding the flatMap combinator is to use features found in

parsley.state, or to use lift combinators instead.

15

`parsley.Parsley`

Choice

When one of two parsers can be used at a specific point, the | combinator (also known as orElse or <|

>) can be used to try one and then the other if the first failed. The result of the successful branch, if any,

will be returned.


A parser p | q will only try q if the parser p failed having not consumed any input. If it does

consume input, then the overall parser will fail. The atomic combinator can be used to prevent input

consumption on failure, however.

When atomic is used in this manner, it may cause error messages to be less effective, or increase

the runtime or complexity of the parser. Backtracking in this way should be avoided if at all possible

by factoring the grammar or employing techniques like Disambiguator Bridges.

Filtering Results

When the results of the parser need to be verified or conditionally transformed, filtering combinators can

be used. Largely, they will try and apply a function to the result of a parser: if the function returns false or

is otherwise not defined, then the parser will fail, and otherwise, it may perform some transformation:

• filter will check if the result of a parser matches some predicate, failing otherwise. If successful, result

is returned unchanged

• collect will attempt to apply a partial function to the result of the parser: if the function is defined on

that input, it is applied and the new result returned; otherwise, the parser fails.

• filterMap is similar to collect, but works with a function that returns Option[B]: if the function

returns None, the parser fails; otherwise the value inside the Some is returned.

Largely, these combinators are more useful in their more advanced formulations, those in

parsley.errors.combinator.ErrorMethods, which produce detailed error messages about filtering

failures.

Reductions

There are a collection of methods that repeatedly perform a parser, and collapse the generated results into

a single value - like regular folds. There are three classes of reductive combinators:

• foldLeft, foldRight: these combine up the results of repeated parsing of a parser starting with an

initial value and combining each result with the running value. When the name of the combinator has

a 1 at the end, it means the parser must succeed at least once; otherwise the parser need not succeed

and the combinator will return the initial value (so long as no input was consumed in the process).

16

`parsley.Parsley`

• reduceLeft, reduceRight: these combine one or more parses of a parser by a left or right reduction.

As the parser will parse successfully at least once, there is no need for a default or initial value.

• reduceLeftOption, reduceRightOption: like reduceLeft or reduceRight, but returns None if the

parser could not successfully parse once, and wraps the result of reduction in a Some otherwise.

Special Methods

The underlying implementation of parsley is more akin to a compiler than a regular parser combinator

library. Some methods exist to help direct the internal compiler:

• force(): this forces the compiler to optimise and compile the parser right now, as opposed to when the

parser is first executed. This should be used on the top-level parser.

• impure: this tells the optimiser to not touch the parser, which may be necessary when the parser deals

with mutable objects. This is because the optimiser assumes purity, and may factor out or even remove

results entirely, which would otherwise change the results. This can be used across the parser.

• overflows(): this tells the compiler that the parser it is invoked on will stack overflow during

compilation. As a result, the compiler will instead process the parser in a stack-safe trampoline. This

should be used on the top-level parser.

Object Parsley

The Parsley object contains a collection of primitive combinators that help control a parser or its results.

By far the most important ones are pure and atomic:

• pure injects a value into the parsing world without having any other effect on the state of the parser.

• atomic ensures that a parser either consumes all its input and succeeds, or none of it and fails. This

is important because the | combinator will not parse its second argument if the first failed having

consumed input - atomic helps by ensuring no input was consumed on failure.

In addition to these, it also has empty and empty(Int), which fail the parser immediately (but recoverably)

and produces a given width of caret (and 0 in the case of empty); lookAhead and notFollowedBy for dealing

with positive and negative lookahead; and fresh, which can be used like pure but evaluates its argument

every time, which is useful in the presence of mutable values.

Iterative Combinators

One of the main classes of combinator are the iterative combinators, which execute parsers multiple times

until they cannot match any more; the results of these combinators vary. If the parser being repeated fails

17

`parsley.Parsley`

having consumed input, iterative combinators will fail; if no input was consumed on failure, the iteration

will stop.

The most commonly used of these are the many and some combinators, which return a list of the successful

results:

import parsley.character.digit
import parsley.Parsley.{many, some}

many(digit.zip(digit)).parse("")
// res0: Result[String, List[Tuple2[Char, Char]]] = Success(List())
many(digit.zip(digit)).parse("1234")
// res1: Result[String, List[Tuple2[Char, Char]]] = Success(List((1,2), (3,4)))
many(digit.zip(digit)).parse("12345")
// res2: Result[String, List[Tuple2[Char, Char]]] = Failure((line 1, column 6):
// unexpected end of input
// expected digit
// >12345
// ^)

some(digit.zip(digit)).parse("")
// res3: Result[String, List[Tuple2[Char, Char]]] = Failure((line 1, column 1):
// unexpected end of input
// expected digit
// >
// ^)
some(digit.zip(digit)).parse("1234")
// res4: Result[String, List[Tuple2[Char, Char]]] = Success(List((1,2), (3,4)))
some(digit.zip(digit)).parse("12345")
// res5: Result[String, List[Tuple2[Char, Char]]] = Failure((line 1, column 6):
// unexpected end of input
// expected digit
// >12345
// ^)

18

`parsley.character`

Parsing Characters

The consumption of input is central to parsing. In parsley, the only way of consuming input is by consuming

characters, as customised token streams are not supported. However, as parsley is based on Scala, which

relies on 16-bit Basic-Multilingual Plane UTF16 characters, there are two modules for input consumption:

character, for 16-bit Char, and unicode, handling 32-bit Ints.


The Scaladoc for this page can be found at parsley.character and parsley.unicode.

Character Primitives

There are three key input consumption primitives in parsley: satisfy, which takes a predicate and

parses any character for which that predicate returns true; char, which reads a specific character; and

string, which reads a specific sequence of characters. Technically, char and string can be built in terms

of satisfy, but would then lose their enhanced error message characteristics.

The oneOf and noneOf are based on satisfy but with better error messages, based on the kind of range

of characters they are provided with. The strings and trie combinators can be used similarly to match a

set of strings: they are likely to parse these more efficiently than a manual construction and may improve

further in future.

String Building

It is possible to efficiently construct a String using the stringOfMany and stringOfSome combinators.

This can be used with either a character predicate (which turns out to be called takeWhileP in

megaparsec), or can be given a parser that consumes a character instead. The construction of the

underlying string is done efficiently with a StringBuilder. Note that, with the version that takes a parser,

the characters incorporated into the string are the ones returned by the parser and not necessarily the

ones the parser consumed.

Pre-Built Character Parsers

Some pre-built parsers are bunched into character and unicode, which parse specific sets of letter, with

good error messages. Each will document the specific set of characters they recognise.

19

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/character$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/unicode$.html

`parsley.combinator`

Additional Combinators
(parsley.combinator)

While many combinators are implemented as methods directly on the Parsley type, some are left as

functions within the combinator module. These mostly involve handling repeating parsers. Not all the

combinators are discussed here.


The Scaladoc for this page can be found at parsley.combinator.

Iterative Combinators

One of the main classes of combinator are the iterative combinators, which execute parsers multiple times

until they cannot match any more; the results of these combinators vary. If the parser being repeated fails

having consumed input, iterative combinators will fail; if no input was consumed on failure, the iteration

will stop.

The most commonly used of these are the many and some combinators (see Object Parsley), which return

a list of the successful results. While some will parse one or more times, manyN generalises to work for any

minimum required parses n. When the results are not needed, skipMany, skipSome, and skipManyN can be

used instead. To determine how many times the parse was successful, the count and count1 can be used

instead.

The manyTill and someTill combinators can be used to parse iteratively until some other parse is

successful: this can be used, for instance, to scan comments:

import parsley.character.{string, item, endOfLine}
import parsley.combinator.manyTill

val comment = string("//") ~> manyTill(item, endOfLine)
// comment: Parsley[List[Char]] = parsley.Parsley@15dcd173
comment.parse("// this is a comment\n")
// res0: Result[String, List[Char]] = Success(List(, t, h, i, s, , i, s, ,
 a, , c, o, m, m, e, n, t))

Separators

There are three variants of the iterative combinators that handle delimited parsing: reading something

separated (or ended) by another delimiter:

• sepBy1: parses input like x, y, z

20

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/combinator$.html

`parsley.combinator`

• endBy1: parses input like x; y; z;

• sepEndBy1: parses input like x, y, z or x, y, z,

Optional Combinators

The option, optional, and optionalAs combinators can be used to optionally parse something. The

option combinator will inject the result into an Option; the optional combinator just returns Unit; and

the optionalAs combinator unconditionally returns any given value.

import parsley.character.digit
import parsley.combinator.option

option(digit.zip(digit)).parse("")
// res1: Result[String, Option[Tuple2[Char, Char]]] = Success(None)
option(digit.zip(digit)).parse("0")
// res2: Result[String, Option[Tuple2[Char, Char]]] = Failure((line 1, column
 2):
// unexpected end of input
// expected digit
// >0
// ^)
option(digit.zip(digit)).parse("09")
// res3: Result[String, Option[Tuple2[Char, Char]]] = Success(Some((0,9)))

Conditional Combinators

The conditional combinators are used for conditional execution of a parser. These include ifP, guard, when,

and whileP. As may be expected, ifP models an if-else-expression, whileP models a while-loop, and when

models an if-statement. They mostly find their utility when used in conjunction with registers.

21

`parsley.templates`

Template Bridges (parsley.templates)

The Parser Bridge pattern is a technique for decoupling semantic actions from the parser itself. The

parsley.templates package contains 23 classes that allow you to get started using the technique straight

away if you wish.


The Scaladoc for this page can be found at parsley.templates.

What are Parser Bridges?

Without making use of Parser Bridges, results of parsers are usually combined by using lift, map, or zipped:

import parsley.syntax.zipped.zippedSyntax2
case class Foo(x: Int, y: Int)
// with px, py of type Parsley[Int]
val p = (px, py).zipped(Foo(_, _))
// p: Parsley[Foo] = parsley.Parsley@206cadf0

These work fine for the most part, however, there are couple of problems with this:

1. In Scala 3, instead of just Foo, we need to write Foo(_, _) or Foo.apply, which introduces some (minor)

noise; zipped itself is even contributing noise.

2. Foo itself is a simple constructor, if it gets more complex, readability rapidly decreases:

• The result produced may require inspection of the data, including pattern matching (see

Normalising or Disambiguating Data).

• Additional information may need to be threaded in, like position information.

• Data invariances may need to be enforced (see Enforcing Invariances).

3. Constructor application is on the right of the data, which people may find harder to read; this can be

mitigated with lift, but that may run into type inference issues.

For some people (1) or (3) may not be an issue, or can be tolerated, but (2) can get out of hand quickly. For

larger parsers, properly decoupling these issues can make a huge difference to the maintainability.

How do bridges help? In short, a bridge is an object that provides an apply method that takes parsers as

arguments, as opposed to values. This means that they can be used directly in the parser with the logic kept

elsewhere. While you can just define a bridge manually with an apply method (or even just as a function), it

22

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/templates.html

`parsley.templates`

is more ergonomic to synthesise a bridge in terms of a function that does not interact with Parsley values.

If we assume that the companion object of Foo has been turned into such a bridge (definition below), the

above example can be written as:

val q = Foo(px, py)
// q: Parsley[Foo] = parsley.Parsley@53638083

In this version, the act of constructing the Foo value has been abstracted behind the bridge, Foo: this means

that the underlying implementation can vary without changing the parser.

What are Template Bridges?

Template bridges are the templating mechanism that allow for the synthesis of an apply method that

works on values of type Parsley from another that does not. While you can define your own bridge

templates (see the associated tutorial for an explanation), parsley provides some basic ones to get you

started.

How to use

The parsley.templates package contains PureParserBridge1 through PureParserBridge22 as

well as PureParserBridge0; they all extend bridges.ParserBridgeSingleton, which provides some

additional combinators as well as bridges.ErrorBridge, which allows labels and a reason to be attached

to a bridge.

PureParserBridge1[-T1, +R] through PureParserBridge22[-T1, .., -T22,
+R]

Each of these traits are designed to be implemented ideally by a companion object for a case class.

For example, the Foo class above can have its companion object turned into a bridge by extending

PureParserBridge2 (which is for two argument bridges):

import parsley.templates.PureParserBridge2
object Foo extends PureParserBridge2[Int, Int, Foo]

This defines def apply(px: Parsley[Int], py: Parsley[Int]): Parsley[Foo], implementing it

in terms of def apply(x: Int, y: Int): Foo, which is included as part of Scala's automatic case

class implementation. By making use of a companion object, this is all the boilerplate required to start

using the bridge. Of course, it's possible to define standalone bridges as well, so long as you provide an

implementation of apply, as illustrated by this error:

23

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/templates.html

`parsley.templates`

object Add extends PureParserBridge2[Int, Int, Int]
// error:
// object creation impossible, since def apply(x1: T1, x2: T2): R in trait
 PureParserBridge2 in package parsley.templates is not defined
// (The class implements a member with a different type: def apply
// (x1: parsley.Parsley[T1], x2: => parsley.Parsley[T2]): parsley.Parsley[R]
 in trait PureParserBridge2 in package parsley.templates)

Implement that apply method and it's good to go! Of course, if the traits are mixed into a regular class,

they can also be parametric:

class Cons[A] extends PureParserBridge2[A, List[A], List[A]]
// error:
// class Cons needs to be abstract, since def apply(x1: T1, x2: T2): R in trait
 PureParserBridge2 in package parsley.templates is not defined
// (The class implements a member with a different type: def apply
// (x1: parsley.Parsley[T1], x2: => parsley.Parsley[T2]): parsley.Parsley[R]
 in trait PureParserBridge2 in package parsley.templates)

ParserSingletonBridge[+T]

All the template bridges extend the ParserSingletonBridge trait instantiated to a function type. For

example, trait PureParserBridge2[-A, -B, +C] extends ParserSingletonBridge[(A, B) =>

C]. This means that every bridge uniformly gets access to a couple of extra combinators in addition to their

apply:

trait ParserSingletonBridge[+T] {
 final def from(op: Parsley[?]): Parsley[T]
 final def <#(op: Parsley[?]): Parsley[T] = this.from(op)
}

The implementation of from is not important, it will be handled by the other PureParserBridgeNs. What

these two combinators give you is the ability to write Foo.from(parser): Parsley[(Int, Int) =>

Foo], for instance. This can be useful when you want to use a bridge somewhere where the arguments

cannot be directly applied, like in chain or precedence combinators:

import parsley.expr.chain
import parsley.syntax.character.given

val term = chain.left1(px)(Add.from("+")) // or `Add <# "+"`

They are analogous to the as and #> combinators respectively.

24

`parsley.templates`

PureParserBridge0[+T]

This trait is a special case for objects that should return themselves. As an example, here is an object which

forms part of a larger AST, say:

import parsley.templates.PureParserBridge0
trait Expr
// rest of AST
case object NullLit extends Expr with PureParserBridge0[Expr]

The NullLit object is part of the Expr AST, and it has also mixed in PureParserBridge0[Expr], giving it

access to from and <# only (no apply for this one!). What this means is that you can now write the following:

val nullLit = NullLit <# "null"
// nullLit: Parsley[Expr] = parsley.Parsley@3c5e23ee
nullLit.parse("null")
// res2: Result[String, Expr] = Success(NullLit)

Without any further configuration, notice that the result of parsing "null" is indeed NullLit, and

nullLit: Parsley[Expr].


Be aware that, on Scala 2, the type passed to the generic parameter cannot be itself:

case object Bad extends PureParserBridge0[Bad.type]
// error: illegal cyclic reference involving object Bad
// case object Bad extends PureParserBridge0[Bad.type]
// ^^^

Resolving this will require introducing an extra type, like Expr in the example with NullLit, which

breaks the cycle sufficiently.

ErrorBridge

The ParserSingletonBridge extends the ErrorBridge trait, which is shaped as follows:

trait ErrorBridge {
 def labels: List[String] = Nil
 def reason: Option[String] = None

 // applies the above labels and reason if applicable
 final protected def error[T](p: Parsley[T]): Parsley[T]
}

25

`parsley.templates`

This allows all derived bridges to specify labels to refer to the parser if it fails, as well as a reason why

it might be needed. This is useful because, anecdotally, I've found that ~70% of instances of the label

combinator occur attached directly to a bridge application; and this therefore allows for error annotation

to kept away from the main parser description.

Additional Use Cases

Other than the natural decoupling that the bridges provide, there are some more specialised uses that can

come out of the template bridges alone.

Normalising or Disambiguating Data

Occasionally, the shape of an AST can change internally even though the syntax of the language being

parsed does not. Bridges are perfectly suited for handling these internal changes while masking them from

the parser itself. As an example, assume that a Let AST node was previously defined as follows:

case class Let(bindings: List[Binding], body: Expr)
object Let extends PureParserBridge2[List[Binding], Expr, Let]

The parser, therefore, can be expected to produce lists of bindings to feed in. However, later it was decided

that the ordering of the bindings doesn't matter, so a Set is being used. The decoupling of the bridge will

allow for this change to happen without changing the parser, so long as the bridge performs the "patching":

case class Let(bindings: Set[Binding], body: Expr)
object Let extends PureParserBridge2[List[Binding], Expr, Let] {
 def apply(bindings: List[Binding], body: Expr): Let
 = Let(bindings.toSet, body)
}

By defining the appropriate "forwarding" in its own apply, the bridge has ensured the parser will still work.

Handling ambiguity Another use of this kind of bridge is to allow for the disambiguation of two syntactically

similar structures. As an example, consider Scala's tuple syntax:

val x = (6)
val xy = (5, 6)

It is clear to us that x is not a "singleton pair", whatever that would be, but a parenthesised expression; on

the other hand, xy is clearly a pair. The problem is that the syntax for these overlap, requiring backtracking

to resolve (you can only know if you're parsing a tuple when you find your first ',').

In practice, arbitrary backtracking in a parser can impact performance and the quality of error messages.

Instead of dealing with this ambiguity by backtracking, it is possible to exploit the shared structure in a

26

`parsley.templates`

Disambiguator Bridge: this is just a bridge that looks at the provided arguments to decide what to make. For

example:

import cats.data.NonEmptyList

case class Tuple(exprs: NonEmptyList[Expr]) extends Expr

object TupleOrParens extends PureParserBridge1[NonEmptyList[Expr], Expr] {
 def apply(exprs: NonEmptyList[Expr]): Expr = exprs match {
 case NonEmptyList(expr, Nil) => expr
 case exprs => Tuple(exprs)
 }
}

In the above example, the parser will parse one or more expressions (signified by the NonEmptyList from

cats); the bridge will then inspect these expressions, returning a single expression if only one was parsed,

and construct the Tuple node otherwise. In the parser, this would just look something like:

// from `parsley-cats`, produces `NonEmptyList` instead of `List`
import parsley.cats.combinator.sepBy1
val tupleOrParens = TupleOrParens("(" ~> sepBy1(nullLit, ",") <~ ")")
// tupleOrParens: Parsley[Expr] = parsley.Parsley@71613123
tupleOrParens.parse("(null)")
// res3: Result[String, Expr] = Success(NullLit)
tupleOrParens.parse("(null,null)")
// res4: Result[String, Expr] = Success(Tuple(NonEmptyList(NullLit, NullLit)))

Enforcing Invariances

So far, the bridges we've seen have been altering the way that the data itself should be constructed from

the results. However, it may also be desirable to override the templated apply to perform additional checks.

This basically means that you can add in a filter-like combinator after the data has been constructed to

validate that the thing you've constructed is actually correct. As an example, it turns out that Scala 2 only

allows tuples with a maximum of 22 elements:

val oops =
 (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3)
// error: tuples may not have more than 22 elements, but 23 given
// val oops = (1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1,
 2, 3)
//

How to adjust the parser to handle this? One possible approach is to use the range combinator:

27

`parsley.templates`

def nonEmptyList[A](px: Parsley[A], pxs: Parsley[List[A]]) =
 lift2(NonEmptyList(_, _), px, pxs)
val tupleOrParensObtuse =
 TupleOrParens("(" ~> nonEmptyList(nullLit, range(0, 21)("," ~> nullLit))
 <~ ")")

This works, but it's very obtuse. Not to mention that the error message generated isn't particularly good.

Instead, we can hook some extra behaviour into the generated apply:

import parsley.errors.combinator.*

object TupleOrParens extends PureParserBridge1[NonEmptyList[Expr], Expr] {
 def apply(exprs: NonEmptyList[Expr]): Expr = exprs match {
 case NonEmptyList(expr, Nil) => expr
 case exprs => Tuple(exprs)
 }

 override def apply(exprs: Parsley[NonEmptyList[Expr]]): Parsley[Expr] =
 super.apply(exprs).guardAgainst {
 case Tuple(exprs) if exprs.size > 22 =>
 Seq(s"tuples may not have more than 22 elements,
 but ${exprs.size} given")
 }
}

This bridge invokes the templated apply with super.apply first, then after processes it with the

guardAgainst combinator to generate a bespoke message:

tupleOrParens.parse("(null,null)")
// res5: Result[String, Expr] = Failure((line 1, column 1):
// tuples may not have more than 22 elements, but 23 given
//
 >(null,null)
//
 ^^)

To be clear, this is using the original definition of tupleOrParens and not tupleOrParensObtuse.


While this use of bridges does retain the unsaturated application from ParserSingletonBridge,

using the from combinator will not perform the additional validation: be careful!

28

`parsley.templates`

When not to use

Simply put, templates bridges have one major limitation: they cannot interact with additional metadata

that might be required in the parser. One excellent example of this is position information. While parsley

could take a stance on how this should be done, I'd prefer if the users can make that decision for themselves.

The previously linked tutorial demonstrates how to make templating bridges from scratch, which you

would need to do to support something like position tracking. Alternatively, if you're using Scala 3 you can

try the macro bridges instead.

29

`parsley.macros`

Macro Bridges (parsley.macros, Scala 3)

The Parser Bridge pattern is a technique for decoupling semantic actions from the parser itself. The

parsley.macros package contains a macro that can handle generation of many kinds of bridge

automatically to help you to get started using the technique straight away if you wish.


The Scaladoc for this page can be found at parsley.macros.

Motivation

The construction of parser bridges is something that involves a certain amount of boilerplate, despite

the benefits they provide. The parsley.templates package demonstrates one way in which this can be

mitigated, producing templating bridge traits which can be mixed into a provider of an apply on values in

exchange for one on parsers.

However, to avoid making the library too opinionated, the templates package only exposes generators for

pure parser bridges, which are those that do not incorporate additional metadata. To deal with metadata,

like positions, it is necessary to define your own template bridge traits. In addition, there is still a small

amount of boilerplate to be had when using these template traits.

As an example:

import parsley.Parsley
import parsley.templates.PureParserBridge2
import parsley.position.{line, col}

case class Pos(line: Int, col: Int)
object Pos extends PureParserBridge2[Int, Int, Pos]

val pos: Parsley[Pos] = Pos(line, col)

Here, we can see a few areas of boilerplate that are not needed:

• There is a mirroring between the types of the arguments to Pos and the type parameters for

PureParserBridge2: this has to be kept in sync, which will be enforced by the compiler, but it is

annoying to change something in two places. We also have to manually ensure the bridge has the correct

arity, in this case 2.

30

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/macros.html

`parsley.macros`

• The strategy for the bridge, namely to use a pure-based semantics, is hard-coded in the bridge template.

If we wanted to add some metadata (more on that later), we would have to remember to also adjust the

PureParserBridge2 to be something else.

• We necessarily have to introduce the companion object, where perhaps we didn't need to before. The

bridge must be kept in the same file as the bridged class otherwise we will need to implement the apply

ourselves.

To help mitigate this, Scala 3 parsley supports a macro-driven bridge generation mechanism that

addresses the above three points, and provides other functionality on top of them.

The bridge Macro

The bridge macro is exposed via parsley.macros.bridge. It takes two main forms: the first is

bridge[T], which creates a bridge for the type T, and bridge[T, S >: T], which constructs a bridge for

the type T, but upcasts the result to construct S instead (which is a supertype of T). To see how easy this is

to use, here is the previous example again:

import parsley.macros.bridge
val Pos2 = bridge[Pos]

val pos2 = Pos2(line, col)

Here, Pos2 works the same way as our Pos bridge from before, but now all of the three painpoints from

above have been addressed. In fact, it is now cleaner to separate the class definition and bridge definitions

in different scopes! That is it!

To be a bit more specific, bridge is what is called a transparent macro in Scala, which means it can return

a different type depending on what the macro internally generated. In our case, the macro will return

something derived from bridges.ErrorBridge, so in this case Pos2: bridges.ParserBridge2[Int,

Int, Pos]. If we add or remove arguments, this will automatically change the type generated by the macro,

so type inference will sort out the boilerplate.

The bridge macro works on pretty much anything you can throw at it:

31

`parsley.macros`

case class A(x: Int)
object B
enum C {
 case X(x: Int)
 case Y
}

val a = bridge[A]
val b = bridge[B.type]
val x = bridge[C.X, C] // the C is optional here, but I prefer to hide
 enum cases.
val y = bridge[C.Y.type, C] // the C is optional here, but I prefer to hide
 enum cases.

This also includes parameterless classes, which always produce ParserSingletonBridges:

class Foo()
class Bar

val foo = bridge[Foo]
val bar = bridge[Bar]

Interestingly, for these, we don't treat them the same way we would objects, which would always return

the same thing. Instead, we will actually create a fresh instance (with the fresh combinator) every time

they are parsed:

import parsley.character.item
import parsley.syntax.zipped.*
(foo.from(item), foo.from(item)).zipped(_ eq _).parse("aa")
// res0: Result[String, Boolean] = Success(x = false)
(bar.from(item), bar.from(item)).zipped(_ eq _).parse("aa")
// res1: Result[String, Boolean] = Success(x = false)

This is not something that the pure templated bridge traits can achieve.

Default Parameters

Some classes might have default parameters that are not relevant to the parser, but that will be relevant

for wherever that data is consumed. For example, suppose we are parsing identifiers, which will later be

assigned a type: during parse time, there is clearly no type to be assigned, so it would be good if we could

"forget" this for the sake of clean parsing. The bridge macro can handle this:

32

`parsley.macros`

enum Type { case NoType }

case class Ident(name: String)(val ty: Type = Type.NoType)

val ident: parsley.bridges.ParserBridge1[String, Ident] = bridge[Ident]

Here, the ident bridge only needs a parser for the String, and will place Type.NoType into the Ident

as it constructs it. A limitation of this currently is that default parameters must not be in the first set of

constructor parameters for the class (i.e. notice that constructor is curried). This can be lifted in future.

Metadata Parsing

One area which the template traits fall short is that you need to construct new templates by hand when

you want to do anything other than pure bridging. This is because there is a vast design space now possible.

Let's suppose we wanted to add position information to our Ident class above. Do we want it to go as the

first parameter? in the second set of parameters? At the end of the first set? So many choices are possible

here, and so parsley doesn't provide any default template trait for it. However, the bridge macro does

have the ability to handle this as long as the user annotates exactly what is metadata:

import parsley.macros.{bridge, isMeta}

case class Ident(name: String)(@isMeta val pos: Pos, val ty: Type
 = Type.NoType)

val ident = bridge[Ident]
// error:
// attribute pos can only use @isMeta with a
 `parsley.macros.ParsableMetadata[Pos]` instance in scope
// case class Ident(name: String)(@isMeta val pos: Pos, val ty: Type =
 Type.NoType)
// ^

As you can see from the above error message, when we use @isMeta to denote something is parser-

produced metadata, we need to tell parsley how we expect it to be parsed. This is done via the

ParsableMetadata typeclass. Let's create one of those:

import parsley.macros.ParsableMetadata

given ParsableMetadata[Pos] {
 val meta = pos
}

33

`parsley.macros`

By doing this, we provide a meta parser, which is then what the bridge macro will use to parse the metadata

to add into the class later. By default, parsley provides a ParsableMetadata[(Int, Int)] instance for

line and column pairs.

import parsley.macros.{bridge, isMeta}

case class Ident(name: String)(@isMeta val pos: Pos, val ty: Type
 = Type.NoType)

val ident = bridge[Ident]

This now works. The order in which this metadata is parsed, relative to the name parser, will always be

first. If there is more than one @isMeta used, they will be parsed in order of appearance, ahead of all other

arguments. It remains future work to allow for an annotation that allows us to denote after which bridge

parameter the metadata is parsed.

Polymorpic Bridges

When using template bridge traits, one limitation is that if the class you want to bridge is polymorphic, the

bridge traits can't be mixed into the companion object! Suppose you tried:

class Poly[A](val x: A)
object Poly extends parsley.templates.PureParserBridge1[A, Poly[A]]
// error:
// Not found: type A
// object Poly extends parsley.templates.PureParserBridge1[A, Poly[A]]
// ^
// error:
// Not found: type A
// object Poly extends parsley.templates.PureParserBridge1[A, Poly[A]]
// ^

Oops! Ok, so what if we just fix A to be a specific type?

class Poly[A](val x: A)
object Poly extends parsley.templates.PureParserBridge1[Int, Poly[Int]]
// error:
// object creation impossible, since def apply(x1: T1): R in trait
 PureParserBridge1 in package parsley.templates is not defined
// (Note that
// parameter T1 in def apply(x1: T1): R in trait PureParserBridge1 in package
 parsley.templates does not match
// parameter parsley.Parsley[Int] in def apply(x1: parsley.Parsley[T1]):
 parsley.Parsley[R] in trait PureParserBridge1 in package parsley.templates
//)
// object Poly extends parsley.templates.PureParserBridge1[Int, Poly[Int]]
// ^

34

`parsley.macros`

It wants an apply in the companion object that works on Int, but obviously the one it sees works

generically on A. Basically, to use the templates here, we need to make it its own object, which also needs

implementing apply by hand.

Thankfully, bridge is undeterred:

class Poly[A](val x: A)

def polyA[A] = bridge[Poly[A]]
val polyInt = bridge[Poly[Int]]

No problems either way. In fact, this even works with the @isMeta annotation:

class PolyMeta[A](@isMeta val x: A)

def polyMetaA[A: ParsableMetadata] = bridge[PolyMeta[A]]
val polyMetaPos = bridge[PolyMeta[Pos]]

Error Messages

The parser bridge traits all extend an ErrorBridge, which allows for the integration of labels and reasons

into bridges. The template bridge traits inherit these, so the extender of the trait can override labels

and reason and get the right behaviours while keeping them out of the parser. This is nice, and the macro

supports it under a slightly different mechanism.

The bridge we've seen so far is actually not a function, but an object with an apply[T] and apply[T,

S]: let's call this a bridge synthesiser. It also has two other methods: label and explain, which themselves

return a new bridge synthesiser that can incorporate those components. If you use label, the synthesiser

it returns does not itself have a label method, but does have an explain (and vice-versa), so you can build

these up "Builder Pattern"-style. As an example:

import parsley.character.digit
case class Num(n: Int)

val num = bridge.label("number").explain("numbers are made of 1 or more
 digits")[Num]

35

`parsley.macros`

num(digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit)).parse("a")
// res5: Result[String, Num] = Failure((line 1, column 1):
// unexpected "a"
// expected number
// numbers are made of 1 or more digits
// >a
// ^)

Limitations

Unfortunately, the bridge macro is not perfect. There are still some areas where the template bridge traits

manage to allow slightly more flexibility. The key is that the bridge macro forces a specific shape of bridge

using all the provided arguments to the given types primary constructor as-is. Any modifications you might

want to make to these, perhaps to adapt to another type, will not be picked up.

For example, disambiguation bridges (as described in other pages) involve processing data into potentially

different sibling types. The bridge macro can't figure this out, so that's a use-case that is ruled out.

As another example, validation bridges need to inject filtering logic into the bridge, which is not currently

supported. However, this is something that I believe can be made to work (unlike the disambiguation

bridges above), so this may be supported by some more synthesisers at a later point.

36

`parsley.syntax`

Synactic Extensions (parsley.syntax)

The parsley.syntax package contains several modules that enable new "syntax" on parsers or other

values. There are currently four such modules:

• parsley.syntax.character: contains conversions that allow for character and string literals to serve

as parsers.

• parsley.syntax.lift: enables the lift method on functions to allow them to work on parsers.

• parsley.syntax.zipped: enables the zipped method on tuples of parsers to sequence and combine

their results with a single function.

Implicit Conversions

The charLift and stringLift conversions in parsley.syntax.character allow for Scala character and

string literals to work directly as parsers for those specific literals. For example:

import parsley.syntax.character.given

val p = 'a' ~> "bc"
// p: Parsley[String] = parsley.Parsley@5bdd73c2
p.parse("abc")
// res0: Result[String, String] = Success(bc)
p.parse("axy")
// res1: Result[String, String] = Failure((line 1, column 2):
// unexpected "xy"
// expected "bc"
// >axy
// ^^)

In the above, 'a': Parsley[Char], and "bc": Parsley[String].


If you see an error like this, when you otherwise have the implicit imported:

37

`parsley.syntax`

val p = "cb" <~ 'a'
p.parse("cba")
// error:
// value <~ is not a member of String.
// An extension method was tried, but could not be fully constructed:
//
// lexer.lexeme.symbol.implicits.implicitSymbol("cb")
// val p = "cb" <~ 'a'
// ^^^^^^^

Then this likely means that you have another conversion in scope and the ambiguity is not resolved.

If the arguments reversed, this will become more evident:

val p = 'a' ~> "bc"
p.parse("abc")
// error:
// Found: ("bc" : String)
// Required: parsley.Parsley[Any]
// Note that implicit conversions cannot be applied because they are
 ambiguous;
// both method stringLift in object character and method
 implicitSymbol in class ImplicitSymbol convert from ("bc" : String) to
 parsley.Parsley[Any]

In this case, a lexer.lexeme.symbol.implicits is imported and is clashing.

Improved Sequencing

Both the lift and zipped modules within parsley.implicits enable new ways of sequencing parsers

in an idiomatic way. The lift syntax is perhaps more natural, where the function to apply appears to the

left of the arguments:

import parsley.character.char
import parsley.syntax.lift.*

val add = (x: Int, y: Int) => x + y
// add: Function2[Int, Int, Int] = repl.MdocSession$MdocApp$$Lambda
$17093/0x0000000804213040@73d92a0
add.lift(char('a').as(5), char('b').as(6)).parse("ab")
// res4: Result[String, Int] = Success(11)

However, while lift works well when the function has its type fully elaborated, it does not infer well:

(_ + _).lift(char('a').as(5), char('b').as(6)).parse("ab")
// error:
// Could not infer type for parameter _$1 of anonymous function

38

`parsley.syntax`

//
// In expanded function:
// (_$1, _$2) => _$1 + _$2
//
// Expected type for the whole anonymous function: ?{ lift: ? }
// error:
// Could not infer type for parameter _$2 of anonymous function
//
// In expanded function:
// (_$1, _$2) => _$1 + _$2
//
// Expected type for the whole anonymous function: ?{ lift: ? }
// (_ + _).lift(char('a').as(5), char('b').as(6)).parse("ab")
// ^

This is where zipped comes in: by placing the function to the right of its arguments, it can infer the type of

the function based on the arguments. This may appear slightly less natural, however:

import parsley.syntax.zipped.*
(char('a').as(5), char('b').as(6)).zipped(_ + _).parse("ab")
// res6: Result[String, Int] = Success(11)


The zipped syntax, unlike the liftN combinators or lift syntax, is not lazy in any of its arguments,

so care may be needed to use LazyParsley.unary_~ to restore laziness to those arguments that

need it.

Both lift and zipped work for up to 22-argument functions.

39

`parsley.position`

Position Combinators
(parsley.position)

During a parse, position information is tracked and recorded by parsley. The parsley.position module

contains combinators that can access this information so that it can be used in the construction of the

results.


The Scaladoc for this page can be found at parsley.position.

Position Extraction

The line and col parsers will extract the line and column respectively. In parsley, the first line and column

are both 1. For convenience, the pos parser is defined as line.zip(col).

Offset Extraction

The offset parser can be used to obtain the raw underlying offset of a parser, which can be used for

calculations on the number of characters (not codepoints) a parser consumes, but should not be used to

derive positions themselves.

40

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/position$.html

`parsley.state`

Context-Sensitive Parsing
(parsley.state)

Normally, context-sensitive parsing can be done with monadic flatMap. However, in parsley, flatMap is a

very expensive operation and is best avoided. Instead, parsley supports a form of arbitrary state threading

called references. These can be used to perform context-sensitive parsing in a more performant way at a

cost to expressive power.


The Scaladoc for this page can be found at parsley.state.

References

A reference is a single piece of mutable state threaded through a parser. They can be made in three

different ways:

1. Importing parsley.state.RefMaker allows the use of the makeRef method on any type A:

def makeRef[B](body: Ref[A] => Parsley[B]): Parsley[B]

This will construct a new reference filled with the receiver value, and this can be used within the scope

of the given continuation. Everytime this is executed, it will be uniquely scoped (when the parser is

recursive).

2. Similarly, importing parsley.state.StateCombinators allows the use of the fillRef combinator on

Parsley[A], which has the same signature as makeRef.

It behaves similarly to makeRef, but sources its result from a parser. Loosely: p.fillRef(body) is the

same as p.flatMap(_.makeRef(body)), but is much more efficient.

3. The Ref.make[A]: Ref[A] method allows for the creation of a reference outside of the parsing context.

This is not recommended, as it will not guarantee uniqueness of scoping. The state will not be initialised.


Using the same globally constructed reference in two different parsers (in terms of calling

.parse on them) is undefined behaviour and should not be done.

References themselves have two core operations, with several more built on top:

41

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/state$.html

`parsley.state`

class Ref[A] {
 def get: Parsley[A]
 def set(p: Parsley[A]): Parsley[Unit]
}

The get method will read the reference at parse-time and return the value contained within. The set

method takes the result of a parser and stores that into the reference. As examples:

import parsley.character.item
import parsley.state.*

List.empty[Char].makeRef { r1 =>
 item.fillRef { r2 =>
 r1.set(r2.get <::> (r2.get <::> r1.get))
 } *> r1.get
}.parse("a")
// res0: Result[String, List[Char]] = Success(List(a, a))

The above example fills a reference r1, with the empty list, then fills a second reference r2 with the result of

parsing any character. The value in r1 is updated with the list obtained by prepending the parsed character

onto the empty list stored in r1 twice. After r2 goes out of scope, the current value of r1 is returned.

Persistence

In the above example, the reference r2 is only used for get, but is used multiple times. Normally, using the

value of a parser more than once requires a flatMap; this is not the case in parsley when using references.

To make this application more ergonomic, parsley.state.StateCombinators also exposes the persist

combinator:

List.empty[Char].makeRef { r1 =>
 item.persist { c =>
 r1.set(c <::> (c <::> r1.get))
 } *> r1.get
}.parse("a")
// res1: Result[String, List[Char]] = Success(List(a, a))

Persist can be thought of as a composition of fillRef and get, or alternatively as a composition of flatMap

and pure.

Using Persistence

One use of persist is to otherwise reduce the scope of an expensive flatMap: the flatMap combinator is

expensive because it has to process the body of the function in full everytime it is executed, if the size of the

42

`parsley.state`

body is reduced, that will keep the parser faster. Currently, there is no primitive functionality for parsing

with respect to values inside references, like so:

def string(r: Ref[String]): Parsley[String]
 = r.get.flatMap(parsley.character.string)

The scope of the flatMap in that combinator is small, however, so is likely much more efficient than one

that didn't use persistence. With this, the context-sensitive parsing of XML tags can be done:

import parsley.Parsley.{atomic, notFollowedBy}
import parsley.character.{stringOfSome, letter}
import parsley.combinator.optional
import parsley.syntax.character.given

val openTag = atomic('<' <~ notFollowedBy('/'))
// openTag: Parsley[Char] = parsley.Parsley@357f8135
val tagName = stringOfSome(letter)
// tagName: Parsley[String] = parsley.Parsley@4964d297

lazy val content: Parsley[Unit] = optional(tag)
lazy val tag: Parsley[Unit] = (openTag ~> tagName <~ '>').fillRef { name =>
 content <~ ("</" ~> string(name) <~ ">")
}

tag.parse("<hello></hello>")
// res2: Result[String, Unit] = Success(())
tag.parse("<hello></hi>")
// res3: Result[String, Unit] = Failure((line 1, column 10):
// unexpected "hi>"
// expected "hello"
// ><hello></hi>
// ^^^)
tag.parse("<a></c>")
// res4: Result[String, Unit] = Failure((line 1, column 13):
// unexpected "c"
// expected "a"
// ><a></c>
// ^)

Long-Term State

Persistence is an example of read-only state used to preserve a value for later. Writable state can also be

used for context-sensitive tasks, by tracking a value over time. Examples include whitespace-sensitivity or

tracking matching brackets.

43

`parsley.state`

Matching Brackets

The setDuring and updateDuring combinators can be used to reset state after a specific context is

executed. They can be built primitively out of get, set, and persist. The following parser reports the

position of the last unclosed bracket that is well-interleaved with the other kinds of brackets.

import parsley.Parsley.{eof, many}
import parsley.character.char
import parsley.errors.patterns.VerifiedErrors
import parsley.position.pos

case class Brackets(open: Char, position: (Int, Int)) {
 def enter(c: Char, p: (Int, Int)) = {
 val (line, col) = p
 // adjust the column, because it was parsed post-bracket
 this.copy(open = c, position = (line, col-1))
 }
 def missingClose = s"unclosed $open originating at $position"
}
object Brackets {
 def empty = Brackets(0, null) // this will never be matched on
 def toOpen(c: Char) = c match {
 case ')' => '('
 case ']' => '['
 case '}' => '{'
 }
}

def brackets = Brackets.empty.makeRef { bs =>
 def open(c: Char): Parsley[Unit] =
 char(c) ~> bs.update(pos.map[Brackets => Brackets](p => _.enter(c, p)))
 def close(c: Char): Parsley[Unit] =
 char(c).void | bs.get.verifiedExplain(_.missingClose)

 // ensure it is reset
 def scope[A](p: Parsley[A]): Parsley[A]
 = bs.updateDuring(identity[Brackets])(p)

 lazy val matching: Parsley[Unit] = scope {
 many(
 open('(') ~> matching <~ close(')')
 | open('[') ~> matching <~ close(']')
 | open('{') ~> matching <~ close('}')
).void
 }
 matching <~ eof
}

The above parser is designed to report where the last unclosed bracket was. It creates a reference bs

that stores a Brackets, which tracks the last open character and its position. Then, whenever a bracket

44

`parsley.state`

is entered, matching will save the existing information using the updateDuring combinator: giving it

the identity function will mean it will simply restore the existing state after it returns. Whenever an

open bracket is parsed, it will write its position into the state (lagging by one character), and then if the

corresponding closing bracket cannot be parsed, it will use an unconditional Verified Error to report a

message based on the last opened bracket. The results are below:

val p = brackets
// p: Parsley[Unit] = parsley.Parsley@4874a85e

p.parse("()()()")
// res5: Result[String, Unit] = Success(())
p.parse("[][][]")
// res6: Result[String, Unit] = Success(())
p.parse("{}[]()")
// res7: Result[String, Unit] = Success(())
p.parse("[[[[[]]]]]")
// res8: Result[String, Unit] = Success(())

p.parse("([)]")
// res9: Result[String, Unit] = Failure((line 1, column 3):
// unexpected ")"
// expected "(", "[", "]", or "{"
// unclosed [originating at (1,2)
// >([)]
// ^)
p.parse("({(")
// res10: Result[String, Unit] = Failure((line 1, column 4):
// unexpected end of input
// expected "(", ")", "[", or "{"
// unclosed (originating at (1,3)
// >({(
// ^)
p.parse("()[]{[(){}}")
// res11: Result[String, Unit] = Failure((line 1, column 11):
// unexpected "}"
// expected "(", "[", "]", or "{"
// unclosed [originating at (1,6)
// >()[]{[(){}}
// ^)

Given the relatively simple construction, it works quite well, and efficiently too: no flatMap necessary!

Tail-Recursive Combinators

When combinators can be implemented tail recursively instead of recursively, they can be more efficient.

In the context of parsley, tail-recursive combinators are ones which only return the result of the last

recursive call they make:

45

`parsley.state`

lazy val tailRec: Parsley[Unit] = 'a' ~> tailRec | unit

The above is tail recursive, for instance. Combinators like skipMany are implemented tail recursively,

with additional optimisations to make them more efficient: implementing new combinators in terms of

skipMany with references to carry state is likely to be efficient. For example:

def setOf[A](p: Parsley[A]): Parsley[Set[A]] = {
 Set.empty[A].makeRef { set =>
 many(set.update(p.map[Set[A] => Set[A]](x => _ + x))) ~> set.get
 }
}

In the above code, a set is carried around in a reference, and a new element is added into this set every

iteration. When the loop completes (successfully), the set in the reference is returned. A more efficient

implementation, however, would use persist and a mutable set (along with impure and fresh): this, of

course, still uses a reference. That said, the idiomatic, and fastest, implementation is to write many(p,

Set).

Whitespace-Sensitive Languages

Another application of long-term state is to track indentation levels in a whitespace-sensitive language:

here the start of a new cause, statement or block will record the current column number, and further

statements must verify that the column number is correct. Leaving a block will restore the indentation level

back to how it was before. This is similar to how matching brackets worked.

Stateful Combinators

For some applications, a more structured strategy for tracking state can be useful. The forP combinators

allow for looping where the a stateful variable is used to control the control flow. For instance, the classic

context-sensitive grammar of a^n b^n c^n can be matched effectively using a reference and a forP:

import parsley.Parsley.pure
import parsley.state.forP
val abcs = 0.makeRef { i =>
 many('a' ~> i.update(_ + 1)) ~>
 forP[Int](i.get, pure(_ > 0), pure(_ - 1)) {
 'b'
 } ~>
 forP[Int](i.get, pure(_ > 0), pure(_ - 1)) {
 'c'
 } ~>
 i.get <~ eof
}
// abcs: Parsley[Int] = parsley.Parsley@1bb887fb

46

`parsley.state`

abcs.parse("aabbcc")
// res12: Result[String, Int] = Success(2)
abcs.parse("aaaaabbbbbccccc")
// res13: Result[String, Int] = Success(5)
abcs.parse("aaaabbbbbbcccc")
// res14: Result[String, Int] = Failure((line 1, column 9):
// unexpected "b"
// expected "c"
// >aaaabbbbbbcccc
// ^)

First, as many as as possible are read and each one will increment the counter i. Then, run the equivalent

of a C-style: for (int j = i, j > 0, j -= 1) reading b and c. Internally, forP will use a reference

to track its state.

47

`parsley.debug`

Basic Debug Combinators
(parsley.debug)

Parsley has a collection of basic debugging utilities found within parsley.debug. These can help debug

errant parsers, understand how error messages have been generated, and provide a rough sense of what

parsers take the most time to execute.

The combinators themselves are all contained within parsley.debug.DebugCombinators.


The Scaladoc for this page can be found at parsley.debug and parsley.debug.DebugCombinators


For a more comprehensive debugging system, check out the parsley-debug library, which has its

own section on the navigation bar.

Debugging Problematic Parsers (debug)

The most common quick debugging combinator is debug, which at its simplest prints some information on

entering and exiting a combinator:

import parsley.Parsley.atomic
import parsley.character.string
import parsley.debug, debug.*

val hello = (atomic(string("hello").debug("hello")).debug("atomic1")
 | string("hey").debug("hey")
 | string("hi").debug("hi")
)
// hello: Parsley[String] = parsley.Parsley@1ddb0e12

debug.disableColorRendering()

hello.parse("hey")
// >atomic1> (1, 1): hey•
// ^
// >hello> (1, 1): hey•
// ^
// <hello< (1, 3): hey• Fail
// ^
// <atomic1< (1, 1): hey• Fail

48

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/debug.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/debug/DebugCombinators.html

`parsley.debug`

// ^
// >hey> (1, 1): hey•
// ^
// <hey< (1, 4): hey• Good
// ^
// res1: Result[String, String] = Success(hey)

hello.parse("hi")
// >atomic1> (1, 1): hi•
// ^
// >hello> (1, 1): hi•
// ^
// <hello< (1, 2): hi• Fail
// ^
// <atomic1< (1, 1): hi• Fail
// ^
// >hey> (1, 1): hi•
// ^
// <hey< (1, 2): hi• Fail
// ^
// res2: Result[String, String] = Failure((line 1, column 1):
// unexpected "hi"
// expected "hello" or "hey"
// >hi
// ^^)

In the above example, an unexpected failure to parse the input "hi" is being debugged using debug. Each

of the string combinators are annotated, as well as the atomic. This allows us to see the control flow of

the parser as it executes, as well as where the input was read up to. In this case, we can see that atomic has

undone input consumption, but that doesn't apply to hey. In other words, there is another atomic missing!

We could have added debug to the | combinator as well to make it even clearer, of course. Though not

visible above, the output is usually coloured. If this causes problems, debug.disableColorRendering()

will disable it, or the colored parameter can be set to false on the combinator.

Breakpoints

The Breakpoint type has values EntryBreak, ExitBreak, FullBreak, and NoBreak, which is the default.

FullBreak has the effect of both EntryBreak and ExitBreak combined: EntryBreak will pause execution

on the entry to the combinator, requiring input on the console to proceed, and ExitBreak will do the same

during the exit.

Watching References

The debug combinator takes a variadic number of reference/name pairs as its last argument. These allow

you to watch the values stored in references as well during the debugging process. For instance:

49

`parsley.debug`

import parsley.Parsley.atomic
import parsley.state.*
import parsley.character.string
import parsley.debug.*

val p = 0.makeRef { r1 =>
 false.makeRef { r2 =>
 val p = (string("hello")
 ~> r1.update(_ + 5)
 ~> (string("!")
 | r2.set(true) ~> string("?")
).debug("punctuation", r2 -> "r2")
)
 r1.rollback(atomic(p).debug("hello!", r1 -> "r1", r2 -> "r2"))
 .debug("rollback", r1 -> "r1")
 }
}
// p: Parsley[String] = parsley.Parsley@1dcca32d

p.parse("hello world")
// >rollback> (1, 1): hello·
// ^
// watched registers:
// r1 = 0
//
// >hello!> (1, 1): hello·
// ^
// watched registers:
// r1 = 0
// r2 = false
//
// >punctuation> (1, 6): hello·world•
// ^
// watched registers:
// r2 = false
//
// <punctuation< (1, 6): hello·world• Fail
// ^
// watched registers:
// r2 = true
//
// <hello!< (1, 1): hello· Fail
// ^
// watched registers:
// r1 = 5
// r2 = true
//
// <rollback< (1, 1): hello· Fail
// ^
// watched registers:
// r1 = 0
//

50

`parsley.debug`

// res4: Result[String, String] = Failure((line 1, column 6):
// unexpected space
// expected "!" or "?"
// >hello world
// ^)

Debugging Error Messages (debugError)

The debugError is a slightly more experimental combinator that aims to provide some (lower-level) insight

into how an error message came to be. For instance:

import parsley.character.{letter, digit, char}
import parsley.Parsley.many
import parsley.debug.*

val q = (many((digit.debugError("digit")
 | letter.debugError("letter")
).debugError("letter or digit")
).debugError("many letterOrDigit")
 ~> many(char('@').debugError("@")).debugError("many @")
 ~> char('#').debugError("#")) | char('!').debugError("!")
// q: Parsley[Char] = parsley.Parsley@22478c4d

q.parse("$")
// >many letterOrDigit> (offset 0, line 1, col 1): current hints are Set()
 (valid at offset 0)
// >letter or digit> (offset 0, line 1, col 1): current hints are Set()
 (valid at offset 0)
// >digit> (offset 0, line 1, col 1): current hints are Set() (valid at
 offset 0)
// <digit< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set(digit)
// reasons = no reasons given
// }
// >letter> (offset 0, line 1, col 1): current hints are Set() (valid at
 offset 0)
// <letter< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set(letter)
// reasons = no reasons given
// }
// <letter or digit< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set(letter, digit)
// reasons = no reasons given
// }

51

`parsley.debug`

// <many letterOrDigit< (offset 0, line 1, col 1): Good, current hints are
 Set(letter, digit) with all added since entry to debug (valid at offset 0)
// >many @> (offset 0, line 1, col 1): current hints are Set(letter, digit)
 (valid at offset 0)
// >@> (offset 0, line 1, col 1): current hints are Set(letter, digit) (valid
 at offset 0)
// <@< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set("@", letter, digit)
// reasons = no reasons given
// }
// <many @< (offset 0, line 1, col 1): Good, current hints are Set("@", letter,
 digit) with Set("@") added since entry to debug (valid at offset 0)
// >#> (offset 0, line 1, col 1): current hints are Set("@", letter, digit)
 (valid at offset 0)
// <#< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set("@", letter, digit, "#")
// reasons = no reasons given
// }
// >!> (offset 0, line 1, col 1): current hints are Set() (valid at offset 0)
// <!< (offset 0, line 1, col 1): Fail
// generated vanilla error (offset 0, line 1, col 1) {
// unexpected item = "$"
// expected item(s) = Set("!")
// reasons = no reasons given
// }
// res6: Result[String, Char] = Failure((line 1, column 1):
// unexpected "$"
// expected "!", "#", "@", digit, or letter
// >$
// ^)

In the above example, you can see how each individual error is raised, as well as evidence of merging, and

how errors can be turned into "hints" if the error is successfully recovered from: this means that the label

may be re-incorporated into the error again later if they are at the valid offset, as seen in the errors for

char('#').

Profiling Parser (Profiler)

The Profiler class, and the accompanying profile combinator, provide a rough guideline of how much of

the runtime a parser might be taking up. The execution of each combinator is measured with a resolution

of 100ns. First, a Profiler object must be set up and implicitly available in scope: its role is to collect

the profiling samples. Then, a parser annotated with profile combinators is ran, and the results can be

displayed with profiler.summary().

52

`parsley.debug`


There is a disclaimer that the profiler "just provides data", no guarantee about its statistical

significance is given. Multiple runs can be performed and these will be aggregated, the profiler

can be cleared using clear().

import parsley.Parsley, Parsley.{many, pure}
import parsley.character.{string, char}
import parsley.combinator.traverse
import parsley.debug.*

def classicString(s: String): Parsley[String] = s.toList match {
 case Nil => pure("")
 case c :: cs => traverse(c, cs*)(char).map(_.mkString)
}

implicit val profiler: Profiler = new Profiler
// profiler: Profiler = ...
val strings = many(classicString("...").profile("classic string")
 <~> string("!!!").profile("optimised string"))
// strings: Parsley[List[Tuple2[String, String]]] = ...
val stringsVoid = many(classicString("...").profile("voided classic string")
 <~> string("!!!").profile("voided optimised string")).void
// stringsVoid: Parsley[Unit] = ...

strings.parse("...!!!" * 10000)
// res8: Result[String, List[Tuple2[String, String]]] = ...
stringsVoid.parse("...!!!" * 10000)
// res9: Result[String, Unit] = ...

profiler.summary()
// name self time num calls average self time
// ---
// classic string 3046235.2μs 10001 304.593μs
// voided optimised string 1004.6μs 10000 0.100μs
// optimised string 7764.8μs 10000 0.776μs
// voided classic string 2541.8μs 10001 0.254μs
// ---

The above example shows that the string combinator is much faster than the "classic" definition in terms

of traverse and char (not even accounting for its improved error messages!). However, it also shows

that when the results are not required (as indicated by the void combinator, which aggressively suppresses

result generation underneath it), the combinators perform much more similarly. You will, however, notice

variance depending on when you visit this page: these results are generated each publish, and sometimes

the non-voided string can outperform the voided one by pure chance!

53

`parsley.debug`

The profile combinator will account for other profiled combinators underneath it, accounting for their

"self time" only. This helps to measure the impact of a specific sub-parser more accurately.

54

`chain`

Chain Combinators

The parsley.expr.chain module contains a variety of combinators for abstracting, most commonly,

the application of operators to values in expressions. This allows parsley to handle left recursion

idiomatically. To distinguish between these chains and the functionality found in parsley.expr.infix,

it is recommended to always import this module qualified as import parsley.expr.chain -- except for

postfix and prefix.


The Scaladoc for this page can be found at parsley.expr.chain.

Binary Chains

The first kind of chains found in chain are the binary chains, which handle infix application of a

binary operator to values in either a left- or right-associative way. These are called chain.left1 or

chain.right1. The 1 here means that there must be at least one value present, though there may be no

operators. As an example:

The above can be parsed using chain.left1(p)(op) to have the effect of parsing like:

It can also be parsed using chain.right1(p)(op) to have the effect of parsing like:


Both of these combinators share the same type, where the parser p: Parsley[A], and the parser

op: Parsley[(A, A) => A]. This means that the two combinators can be freely swapped between

in an implementation. This is useful when the grammar being encoded for is fully-associative and

the associativity within the parser is an implementation detail.

However, if more type-safety is desired, the infix.left1 and infix.right1 combinators may be

more appropriate.

Unary Chains

The other kind of chains found in chain are unary chains, which handle repeated prefix or postfix

application of an operator to a single value. These are called chain.prefix and chain.postfix. There

also 1 variants of these combinators, which will be discussed later.

55

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/expr/chain$.html

`chain`

Given input of shape:

The combinator postfix(p)(op) will parse the input and apply results such that it would look like:

Similarly, given input of shape:

The combinator prefix(p)(op) will parse the input and apply results such that it would look like:


Unlike chain.left1 and chain.right1, there is no infix equivalent for prefix and postfix.

This is because a refined type will not add much to the way the combinators operate.

Ensuring an operator exists

Unlike the difference between chain.left and chain.left1, which allows for an absence of terminal

value; prefix vs prefix1 describe whether or not an operator is required or not. This is enforced by the

type signature of the operations themselves:

def prefix1[A, B <: A](p: Parsley[A])(op: Parsley[A => B]): Parsley[B]

Given that B is a subtype of A, it is not possible for the p's result of type A to be the final return value of

type B. As such, an operator must be parsed which wraps the A into a B. The subtying relation then allows

a nested application of an operator to be upcast into an A so it can be fed into another layer of operator.

56

`infix`

Infix Chain Combinators

The parsley.expr.infix module contains combinators for the strongly-typed abstraction of operators

to values in expressions. This allows parsley to handle left recursion idiomatically. To distinguish between

these chains and those found in parsley.expr.chain, it is recommended to always import this module

qualified as import parsley.expr.infix.


The Scaladoc for this page can be found at parsley.expr.infix.

Binary Chains

The stronger types implied by infix means that only binary chains are useful to define. Both infix.left1

and infix.right1 behave the same as chain.left1 and chain.right1. The difference is in the types:

def left1[A, B](p: Parsley[A], op: Parsley[(B, A) => B])(implicit wrap: A
 => B): Parsley[B]
def right1[A, B](p: Parsley[A], op: Parsley[(A, B) => B])(implicit wrap: A
 => B): Parsley[B]

As both combinators return type B, the B denotes where recursion can appear. The wrap function is a way

of converting the final p value in either bracketing to be a value of type B to fit into the operator. When A

<: B, the A <:< B instance, which is of type A => B will be summoned, meaning the terminal p is upcast

into a B. When A and B are the same type, A =:= B is summoned, which acts as the identity function, and

they behave the same as chain.left1 or chain.right1.

Ultimately, these chains are useful when the parser writer wants further guarantees that the parser

adheres to the grammar precisely: when strong types are employed, infix.left1 and infix.right1

cannot be substituted for each other.

As an example:

57

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/expr/infix$.html

`infix`

import parsley.character.digit
import parsley.expr.infix
import parsley.syntax.character.given

sealed trait Expr
case class Add(x: Expr, y: Num) extends Expr
case class Num(n: Int) extends Expr

lazy val expr = infix.left1(num)("+".as(Add.apply))
lazy val num = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit).map(Num.apply)
expr.parse("56+43+123")
// res0: Result[String, Expr] = Success(Add(Add(Num(56),Num(43)),Num(123)))

In the above example, the Add constructor is recursive on the left, but Num must appear on the right. As Num

and Add share a common supertype Expr, this is what the chains will return. To illustrate what happens if

right1 was used instead:

lazy val badExpr = infix.right1(num)("+".as(Add.apply))
// error:
// Found: (Expr, Num) => Add
// Required: (Num, Any) => Add
// lazy val badExpr = infix.right1(num)("+".as(Add.apply))
// ^^^^^^^^^

Notice that the error message here refers to the type (A, C) => B. In practice, to help reduce type

ascriptions, the explicit C >: B is used as well -- in the working example, C is Expr, A is Num, and B is Add.

The wrap is actually A => C, which in this case is provided by Num <:< Expr.

58

`precedence`

Precedence Combinators

The chain combinators in parsley.expr.{chain, infix} are useful for handling isolated instances

of expression-like behaviours in a grammar. However, they can be cumbersome to use when there are

multiple interacting layers of expression operators. In these circumstances, a precedence table is the

more appropriate choice. In parsley, the precedence machinery is very general, which can make the

documentation intimidating. This page aims to break down how this works, with examples of different uses.

The relevant combinator for turning a precedence table into a parser is the precedence combinator.

Formulating Precedence

In general, a precedence table is formed up of a collection of base "atoms", and then one or more levels of

operators. The precise shape these components take depends on how complex the types of the results are.

The simplest shape of precedence directly takes a variadic list of atoms and then a variadic list of levels

as arguments: the levels lexically closest to the atoms will be the tightest-binding operators. This shape is

discussed in Homogeneous Precedence, below.

More generally, however, the precedence combinator takes a heterogeneous list of levels of operators,

where the base case of this structure contains the atoms. This can be used to handle more generic shapes

of results, and is discussed in Heterogeneous Precedence.

However, both shapes make use of the Ops type, which requires a Fixity to be provided to it. First, it is

good to understand the basics of how that works in a simplified presentation: for now, trust that the types

work out. There are five different Fixity values: InfixL, InfixR, Prefix, Postfix, and InfixN. These

each denote either binary or unary operators, and where recursion may appear for each of them. InfixN is

a non-recursive operator, like < in some languages. At its simplest, Ops first takes a Fixity and then takes

a variadic number of operators that should have that fixity and all have the same precedence. This will be

explored in more detail in Ops and Fixity.

Throughout this section, the following imports and parsers are assumed:

import parsley.Parsley
import parsley.character.{letter, digit, stringOfSome}
import parsley.syntax.character.given

val int: Parsley[Int] = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit)
val ident: Parsley[String] = stringOfSome(letter)

59

`precedence`

Homogeneous Precedence

When the result type of the precedence table is the same throughout the table -- right through to the

atoms, this is a homogeneous precedence table. This can be captured by the Ops smart-constructor, and

make use of the simple flat structure. As an example:

import parsley.expr.{precedence, Ops, InfixL}
import Expr.*

enum Expr {
 case Add(x: Expr, y: Expr)
 case Sub(x: Expr, y: Expr)
 case Mul(x: Expr, y: Expr)
 case Num(n: Int)
 case Var(v: String)
}

val expr: Parsley[Expr] =
 precedence(ident.map(Var.apply), int.map(Num.apply))(
 Ops(InfixL)("*" as Mul.apply),
 Ops(InfixL)("+" as Add.apply, "-" as Sub.apply)
)
// expr: Parsley[Expr] = parsley.Parsley@1af0ff4a

expr.parse("x+5*y")
// res0: Result[String, Expr] = Success(Add(Var(x),Mul(Num(5),Var(y))))

In the above example, notice that Add and Sub are within the same Ops, and therefore are the same

precedence; Mul is closer to the atoms lexically than Add and Sub are, so it binds tighter. All levels have been

marked as left associative with InfixL. When using Prefix or Postfix, the type of the parsers in the Ops

will have type Parsley[A => A] instead of the above Parsley[(A, A) => A].

Ops and Fixity

The above example of precedence did not elaborate on how the types work to allow the operators to vary

in type when the fixity does. Here is the type of the Ops constructor from above:

object Ops {
 def apply[A](fixity: Fixity)(ops: Parsley[fixity.Op[A, A]]*): Ops[A, A]
}

There are a few things to note here. First is that the type returned is Ops[A, A]: this means that the input

type to this precedence layer matches the output type (this is because it's homogeneous). Second is that

the type that the operators must return is fixity.Op[A, A]: this is known as a path-dependent type. Each

object of type Fixity will describe the shape of operators that match that fixity, the two type parameters

60

`precedence`

are the input and output of the operator (again, for homogeneous precedence, these will coincide). This is

formulated as follows:

sealed trait Fixity {
 type Op[A, B]
}
case object InfixL { type Op[A, B] = (B, A) => B }
case object InfixR { type Op[A, B] = (A, B) => B }
case object InfixN { type Op[A, B] = (A, A) => B }
case object Prefix { type Op[A, B] = B => B }
case object Postfix { type Op[A, B] = B => B }

These types align with those seen in parsley.expr.infix, as well as Prefix and Postfix matching the

homogeneous shape in parsley.expr.chain.{prefix, postfix}. As such, when a specific fixity is

provided to Ops, it also fixes the type of the operators in the next set of parentheses.

When considering heterogeneous combinators, the types A and B can indeed vary, and the more general

SOps and GOps will be explored in the next section.

Heterogeneous Precedence

When the results of the precedence table is not the same throughout, it is necessary to generalise the

machinery to make use of either SOps or GOps:

object SOps {
 def apply[B, A <: B](fixity: Fixity)
(ops: Parsley[fixity.Op[A, B]]*): Ops[A, B]
}

object GOps {
 def apply[A, B](fixity: Fixity)(ops: Parsley[fixity.Op[A, B]]*)
 (using wrap: A => B): Ops[A, B]
}

The SOps object allows the input and output to the layer to vary so long as they are in a sub-type relation:

this is the most common form of heterogeneous hierarchy that leverages Scala's strengths. Otherwise,

GOps handles any arbitrary relationship between the types, so long as there is a known implicit A => B

conversion.

Since the types between layers differ, a variadic argument list cannot be used to collect them together.

Instead, the Ops are stitched together into a Prec[A] structure:

61

`precedence`

sealed trait Prec[A] {
 def +:[B](ops: Ops[A, B]): Prec[B]
 def :+[B](ops: Ops[A, B]): Prec[B]
}
case class Atoms[A](atoms: Parsley[A]*) extends Prec[A]

The atoms are placed into Atoms, which is the base case of the list. The +: and :+ operators attach an

additional layer onto the table, adapting the existing tables input type into a new output type via the given

operators. Again, levels closer to the Atoms will bind tighter. As an example:

import parsley.expr.{precedence, SOps, Atoms, InfixL}

sealed trait Expr
case class Add(x: Expr, y: Term) extends Expr
case class Sub(x: Expr, y: Term) extends Expr
sealed trait Term extends Expr
case class Mul(x: Term, y: Atom) extends Term
sealed trait Atom extends Term
case class Num(n: Int) extends Atom
case class Var(v: String) extends Atom

val expr: Parsley[Expr] =
 precedence {
 Atoms(ident.map(Var.apply), int.map(Num.apply)) :+
 SOps(InfixL)("*" as Mul.apply) :+
 SOps(InfixL)("+"as Add.apply, "-" as Sub.apply)
 }
// expr: Parsley[Expr] = parsley.Parsley@308c1f0

expr.parse("x+5*y")
// res1: Result[String, Expr] = Success(Add(Var(x),Mul(Num(5),Var(y))))

Here, the types within the syntax tree are very specific about the fact that all three operators are left

associative. To be able to use this type with precedence SOps is required, since the outer layer takes in

Terms and produces Exprs, the middle layer takes Atoms and produces Terms, and the inner-most atoms

produce Atoms. Notice that, if the layers are incorrectly stitched together, the table does not typecheck:

import parsley.expr.InfixR

val expr: Parsley[Expr] =
 precedence {
 Atoms(ident.map(Var.apply), int.map(Num.apply)) :+
 SOps(InfixR)("*" as Mul.apply) :+
 SOps(InfixL)("+" as Add.apply, "-" as Sub.apply)
 }
// error:
// Found: (Term, Atom) => Term
// Required: (Term, Term) => Term

62

`precedence`

// SOps(InfixR)("*" as Mul.apply) :+
// ^^^^^^^^^

val expr: Parsley[Expr] =
 precedence {
 Atoms(ident.map(Var.apply), int.map(Num.apply)) :+
 SOps(InfixL)("+" as Add.apply, "-" as Sub.apply) :+
 SOps(InfixL)("*" as Mul.apply)
 }
// error:
// Found: (Term, Atom) => Expr
// Required: (Expr, Expr) => Expr
// SOps(InfixL)("*" as Mul.apply)
// ^^^^^^^^^

63

`Lexer`

Lexer (parsley.token.Lexer)

The Lexer class is the main-entry point to the combinator-based functionality of the parsley.token

package. It is given configuration in the form of a LexicalDesc and an optional ErrorConfig. The internal

structure is then a collection of objects that contain various forms of functionality: these are explored in

more detail in this page.

It is worth noting the highest-level structure:

• lexeme and nonlexeme are the top level categorisation of functionality, accounting for whitespace

• fully is a combinator designed to be used around the outer-most parser, ran at most once during a

parse, to consume leading whitespace and ensure all input is consumed.

• space is an object that allows for explicit interaction with whitespace parsing: this is really only

important for whitespace-sensitive languages, and lexeme should be used for almost all other

applications.


The Scaladoc for this page can be found at parsley.token.Lexer.

Distinguishing Between "Lexeme" and "Non-Lexeme"

Broadly, the Lexer duplicates the vast majority of its functionality between two different objects: lexeme

and nonlexeme. Broadly speaking, everything within nonlexeme can be found inside lexeme, but not the

other way around. The name "lexeme" is not an amazing one terminology wise, but there is a historical

precedent set by parsec.

Non-lexeme things A non-lexeme thing does not care about whitespace: these are raw tokens. It is highly

likely that you wouldn't want to use these in a regular parser, but they may be handy for custom error

handling or building composite tokens.

Lexeme things These do account for whitespace that occurs after a token, consuming everything up until

the next token. This means there are some extra pieces of functionality available that don't make much

sense for non-lexeme handling. The lexeme object can also be used as a function via its apply method,

allowing it to make any parser into one that handles whitespace: this should be done for any composite

tokens made with nonlexeme.

64

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/Lexer.html

`Lexer`


Whitespace handling should ideally be handled uniformly by lexeme: it establishes a convention of

only consuming trailing whitespace, which is important for avoiding ambiguity in a parser. If you

cannot use lexeme.apply, you must adhere to this same convention.

For handling initial whitespace in the parser (before the very first token), you should use

Lexer.fully.

Names and Symbols

These two categories of parser are closely linked, as described below.

Lexer.{lexeme, nonlexeme}.names

This object contains the definitions of several different parsers for dealing with values that

represent names in a language, specifically identifiers and operators. These are configured directly by

LexicalDesc.nameDesc, however valid names are affected by the keywords and reserved operators as

given in LexicalDesc.symbolDesc. Both are defined by an initial letter, and then any subsequent letters.


Note that both the start and end letters must be defined for an

identifier/userDefinedOperator to work properly. It is not the case that, say, if

identifierStart is ommited, that identifierLetter is used in its place.

In some cases, languages may have special descriptions of identifiers or operators that work in specific

scenarios or with specific properties. For instance: Haskell's distinction between constructors, which start

uppercase, and variables, which start lowercase; and Scala's special treatment of operators that end in :.

In these cases, the identifier and userDefinedOperator parsers provided by Names allow you to refine

the start letter (and optionally the end letter for operators) to restrict them to a smaller subset. This allows

for these special cases to be handled directly.

Lexer.{lexeme, nonlexeme}.symbol

Compared with names, which deals with user-defined identifiers and operators, symbol is responsible for

hard-coded or reserved elements of a language. This includes keywords and built-in operators, as well as

specific symbols like {, or ;. The description for symbols, found in LexicalDesc.symbolDesc, describes

what the "hard" keywords and operators are for the language: these are always regarded as reserved, and

identifiers and user-defined operators may not take these names. However, the symbol object also defines

65

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/names/Names.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/NameDesc.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/SymbolDesc.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/symbol/Symbol.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/SymbolDesc.html

`Lexer`

the softKeyword and softOperator combinators: these are for keywords that are contextually reserved.

For example, in Scala 3, the soft keyword opaque is only considered a keyword if it appears before type;

this means it is possible to define a variable val opaque = 4 without issue. In parsley, this could be

performed by writing atomic(symbol.softKeyword("opaque") ~> symbol("type")). Keywords and

reserved operators are only legal if they are not followed by something that would turn them into part of a

wider identifier or user-defined operator: even if if is a keyword, iffy should not be parsed as if then fy!


Both soft and hard keywords cannot form part of a wider identifer. However, for this to work it is

important that NameDesc.identifierLetter (and/or NameDesc.operatorLetter) is defined. If

not, then parsley will not know what constitutes an illegal continutation of the symbol!

To make things easier, symbol.apply(String) can be used to take any literal symbol and handle it

properly with respect to the configuration (except soft keywords need to go via softKeyword). If if is part

of the hardKeywords set, then symbol("if") will properly parse it, disallowing iffy, and so on. If the

provided string is not reserved in any way, it will be parsed literally, as if string had been used.

The symbol object also defines a bunch of pre-made helper parsers for some common symbols like ;, ,, and

so on. They are just defined in terms of symbol.apply(String) or symbol.apply(Char).

Implicits symbol.implicits contains an implicitSymbol: Conversion[String, Parsley[Unit]],

which does the same job as symbol.apply, but is defined as an implicit conversion. By importing this, string

literals can themselves serve as parsers of type Parsley[Unit], and parse symbols correctly. With this, it

instead of symbol("if") you can simply write "if".

Lexer.{lexeme, nonlexeme} Numeric Parsers

This object contains the definitions of several different parsers for handling numeric data: this includes

both integers and floating point numbers. The configuration for all of these parsers is managed by

LexicalDesc.numericDesc. The members are split into three kinds:

• parsley.token.numeric.IntegerParsers: values with this type deal with whole numbers, and this

interface in particular has support for different bases of number as well as various bit-widths of parsed

data. When the bit-width of the parser is restricted, the generated result can be any numeric type that

is wide enough to accommodate those values. If the parsed int does not fit in the required bounds, a

parse error will be generated. If no bit-width is specified, an arbitrary BigInt is used.

66

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/Lexer$lexeme$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/numeric/NumericDesc.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/numeric/IntegerParsers.html

`Lexer`

The supported bit-widths within parsley are 8, 16, 32, and 64. When one of these widths is chosen,

the Scala compiler will automatically pick a result type that matches the same width (so Int for 32). If

the generic parameter is filled manually, the given type will be used instead as long as it is wide enough.

Currently, there is no way of adding new bit-widths or defining custom numeric container types.

• parsley.token.numeric.RealParsers: values with this type deal with floating-point numbers only:

values without a point or an exponent (if allowed) will not be parsed by these parsers. Like Integer,

different bases can be specified: in this case the meaning of exponents can be controlled within the

configuration, for instance, a hexadecimal floating-point literal like 0xAp4 classically would represent

10 * 2^4, or 160, because p represents an exponent delimiter and hexadecimal exponents are normally

base 2 (but this is fully configurable in parsley).

Compared to IntegerParsers, different precisions can be chosen for RealParsers, allowing for

arbitrary-precision floats, Float, and Double results. For the stricter representations, there is a

doubleRounded/floatRounded that just gives the nearest valid value (with no parse errors), and a

double/float which demands that the parsed literal must at least be between the smallest and largest

numbers of the type.

• parsley.token.numeric.CombinedParsers: values with this type can deal with both integers and

floating-point numbers. This is done by returning one or the other as part of an Either. A slightly limited

selection of bit-widths and precisions are available for both parts. The draw of these combinators is that

they may remove the ambiguity between the two kinds of literal so that no backtracking is required

within the parser.


The configuration which specifies which of the numeric bases are legal for a number literal applies

only to the number parsers within Integer, Real, and Combined. A parser for a specific base can

always just be used directly, even when otherwise disabled in configuration.

Examples of Configuration and Valid Literals

The plain definition of NumericDesc provides a variety of different configurations for the numeric literals

depending on the literal base, so it mostly suffices to look at the effects of these on the different bases to

get a sense of what does what.

val lexer = new Lexer(LexicalDesc.plain)

67

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/numeric/RealParsers.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/numeric/CombinedParsers.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/numeric/NumericDesc$.html#plain

`Lexer`

The basic configuration allows number to work with hexadecimal and octal literals, as well as decimal.

These have their standard prefixes of 0x and 0o, respectively (or uppercase variants). This means that

unsigned.number will allow literals like 0, 0xff, 0o45 and 345. For signed, each of these may be

preceded by a + sign, but this is not required; if positiveSign is set to PlusSignPresence.Compulsory,

positive literals would always require a +; and if it is set to PlusSignPrecense.Illegal, the + prefix

can never be used (but - is fine regardless). By default, 023 is legal, but this can be disabled by setting

leadingZerosAllowed to false.

val num = lexer.lexeme.signed.number
// num: Parsley[BigInt] = parsley.Parsley@26e9e4ad
num.parse("0")
// res0: Result[String, BigInt] = Success(x = 0)
num.parse("0xff")
// res1: Result[String, BigInt] = Success(x = 255)
num.parse("+0o45")
// res2: Result[String, BigInt] = Success(x = 37)
num.parse("-345")
// res3: Result[String, BigInt] = Success(x = -345)

In the basic configuration, break characters are not supported. However, by setting literalBreakChar to

BreakCharDesc.Supported('_', allowedAfterNonDecimalPrefix = true), say, will allow for 1_000

or 0x_400. Setting the second parameter to false will forbid the latter example, as the break characters

may then only appear between digits.

val lexerWithBreak = new Lexer(LexicalDesc.plain.copy(
 numericDesc = NumericDesc.plain.copy(
 literalBreakChar
 = BreakCharDesc.Supported('_', allowedAfterNonDecimalPrefix = true))
))
// lexerWithBreak: Lexer = parsley.token.Lexer@7ae23fcc
val withBreak = lexerWithBreak.lexeme.signed.number
// withBreak: Parsley[BigInt] = parsley.Parsley@3731f68c
withBreak.parse("1_000")
// res4: Result[String, BigInt] = Success(x = 1000)
withBreak.parse("1_")
// res5: Result[String, BigInt] = Failure(
// ...
withBreak.parse("2__0") // no double break
// res6: Result[String, BigInt] = Failure(
// ...

Real numbers in the default configuration do not support literals like .0 or 1., this behaviour must be

explicitly enabled with trailingDotAllowed and leadingDotAllowed: note that . is not a valid literal,

even with both flags enabled! By default, all four different bases support exponents on their literals for

68

`Lexer`

floating-point numbers. This could be turned off for each by using ExponentDesc.NoExponents. However,

with exponents enabled, it is configured that the non-decimal bases all require exponents for valid literals.

Whilst 3.142 is valid decimal literal, 0x3.142 is not a legal hexadecimal literal: to make it work, the

exponent must be added, i.e. 0x3.142p0, where p0 is performing * 2^0. For each of the non-decimal literals,

the base of the exponent is configured to be 2, hence 2^0 in the previous example; for decimal it is set to

the usual 10, so that 2e3 is 2*10^3, or 2000. Notice that literals do not require a point, so long as they do

have an exponent.

val real = lexer.lexeme.real
// real: RealParsers = parsley.token.numeric.LexemeReal@6472af6e
real.hexadecimalDouble.parse("0x3.142")
// res7: Result[String, Double] = Failure(
// ...
real.hexadecimalDouble.parse("0x3.142p0")
// res8: Result[String, Double] = Success(x = 3.07861328125)
real.binary.parse("0b0.1011p0")
// res9: Result[String, BigDecimal] = Success(x = 0.6875)
real.decimal.parse("3.142")
// res10: Result[String, BigDecimal] = Success(x = 3.142)
real.decimal.parse("4")
// res11: Result[String, BigDecimal] = Failure(
// ...
real.decimal.parse("2e3")
// res12: Result[String, BigDecimal] = Success(x = 2000)


When a floating point literal is parsed in a non-decimal base, the meaning of each digit past the point

is to be a fraction of that base. The example 0x3.142p0, for instance is not equal to the decimal

3.142. Instead, it is equal to (3 + 1/16 + 4/(16^2) + 2/(16^3)) * 2^0 = 3.07861328125.

Handily, hexadecimal floats are still equal to the 4-bit bunching up of binary floats: 0x0.Bp0 is the

same as 0b0.1011p0, both of which are 0.6875 in decimal.

Lexer.{lexeme, nonlexeme} Text Parsers

This object deals with the parsing of both string literals and character literals, configured broadly by

LexicalDesc.textDesc:

• parsley.token.text.StringParsers: values with this type deal with multi-character/codepoint

strings. Specifically, the interface provides ways of dealing with different levels of character encodings.

In practice, there are four values with this type: text.string, text.rawString, text.multiString,

and text.rawMultiString covering three different kinds of string:

69

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/Lexer$lexeme$$text$.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/text/TextDesc.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/text/StringParsers.html

`Lexer`

• text.string: used to handle regular string literals where escape characters are present. They are

single-line.

• text.multiString/text.rawMultiString: handles string literals using the multiStringEnds

configuration within LexicalDesc.textDesc. These string literals can span multiple lines.

• text.rawString/text.rawMultiString: handles string literals that do not have escape

characters.


Note that currently, whatever a string literal is started with, it must end with the exact same

sequence.

• parsley.token.text.CharacterParsers: like StringParsers, the text.character object can

handle different kinds of text encoding. However, unlike String, there is only one kind of character

available, which has escape codes and can only contain a single graphic character (or, if applicable, single

unicode codepoint).


A single codepoint here refers to having at most two 16-bit UTF-16 characters in a surrogate

pair, allowing for any character in the range 0x00000 to 0x10ffff. Some unicode characters are

composed of multiple codepoints. As an example, national flags are composed of two "regional

indicator characters", for instance # and #, making ##. Such emoji cannot appear within a parsed

character in parsley, and can instead only be written in a string.

Examples of Configuration and Valid Literals

The majority of configuration for strings and characters is focused around the escape sequences. Outside

of that, it is mostly just what the valid start and end sequences are valid for different flavours of literal.

However, the graphicCharacter predicate is used to denote what the valid characters are that can appear

in a string verbatim. This can be restricted to a smaller set than might otherwise have been checked by

ascii or latin1 parsers. In these instances, a different error message would be generated:

val aboveSpace = Unicode(_ >= 0x20)
// aboveSpace: Unicode = Unicode(repl.MdocSession$MdocApp$$Lambda
$17214/0x0000000804275840@4e5f0c0b)
def stringParsers(graphicChar: CharPred = aboveSpace,
 escapeDesc: EscapeDesc = EscapeDesc.plain) =
 new Lexer(LexicalDesc.plain.copy(
 textDesc = TextDesc.plain.copy(
 escapeSequences = escapeDesc,

70

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/text/CharacterParsers.html

`Lexer`

 graphicCharacter = graphicChar
)
)).nonlexeme.string

val fullUnicode = stringParsers(aboveSpace)
// fullUnicode: StringParsers = parsley.token.text.ConcreteString@46879c4
val latin1Limited = stringParsers(Basic(c => c >= 0x20 && c <= 0xcf))
// latin1Limited: StringParsers = parsley.token.text.ConcreteString@7f021a85

fullUnicode.latin1.parse("\"hello α\"")
// res13: Result[String, String] = Failure((line 1, column 2):
// non-latin1 characters in string literal, this is not allowed
// >"hello α"
// ^^^^^^^)
latin1Limited.fullUtf16.parse("\"hello α\"")
// res14: Result[String, String] = Failure((line 1, column 8):
// unexpected "α"
// expected """ or string character
// >"hello α"
// ^)

When it comes to escape characters, the configuration distinguishes between four kinds of escape

sequence, which are further sub-divided:

Denotative escapes These are a family of escape sequences that are names or symbols for the escape

characters they represent. Parsley supports three different kinds of denotative escape characters:

• EscapeDesc.literals: these are a set of characters that plainly represent themselves, but for

whatever reason must be escaped to appear within the string. Some of the most common examples

would be \" or \\, which are an escaped double quote and backslash, respectively. The literal set for

these would be Set('"', '\\')

• EscapeDesc.mapping: these are a mapping of specific sequences of characters to the underlying

characters they represent. Commonly, this might be something like \n, which would be represented in

the map by an entry "n" -> 0xa, or "NULL" -> 0x0 for '\NULL'.

Of course, all denotative escape sequences can be represented by the mapping on its own, and all the above

examples could be represented by Map("\"" -> '"', "\\" -> '\\', "n" -> 0xa, "NULL" -> 0x0).

For literals in particular, the Set is more ergonomic than the Map.


Note that the literals set, along with the keys of mapping, must all be distinct from each other.

Furthermore, no empty sequences may be placed in mapping. Violating any of these requirements

will result in an error.

71

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/text/EscapeDesc.html

`Lexer`

Numeric escapes These are escapes that represent the numeric code of a specific character. There are four

different bases for numeric escapes: binary, octal, hexadecimal, and decimal. Each of these can have their

own unique prefix (or lack there of), maximum allowed value, and specific number of digits:

• NumberOfDigits.Unbounded: simply, this allows the numeric escape to have any number of digits, so

long as the end result is within the specified maximum value of the escape.

• NumberOfDigits.AtMost(n: Int): this denotes that there is an upper-limit to the number of digits

allowed for the escape sequence, but it can take any number of digits below this limit. Again, the end

result must still be within the specified maximum value of the escape.

• NumerOfDigits.Exactly(ns: Int*): this denotes that the number of digits can be one of the

specified totals in ns (there must be at least one provided number). For example Exactly(1, 2, 4,

6) would allow escapes like \0, \20, \0400, \10fffe are legal, but \400 would not be.

String gaps Supported for string literals only, string gaps allow for prunable whitespace within a string

literal. These take the form of a backslash, followed by whitespace, terminated by another backslash (this

can include newlines, even in otherwise single-line strings). As an example:

val withGaps = stringParsers(escapeDesc = EscapeDesc.plain.copy(gapsSupported
 = true))
// withGaps: StringParsers = parsley.token.text.ConcreteString@71bd5865
withGaps.ascii.parse(""""Hello \

 \World!" """)
// res15: Result[String, String] = Success(Hello World!)

Empty escapes These are also only supported by string literals. These characters have no effect on the

string literal, but otherwise allow for disambiguation with multi-character escape sequences. For example,

if EscapeDesc.emptyEscape is set to Some('&'), then "\x20\&7" would be interpreted as the string "

7", however, without the \& character, it would try and render character 0x207.

Lexer.lexeme.{enclosing, separators}

These two objects just contain various shortcuts for doing things such as semi-colon

separated things, or braces enclosed things, etc. There is nothing special about them: with

lexer.lexeme.symbol.implicits.given imported, "(" ~> p <~ ")" is the same as

lexer.lexeme.enclosing.parens(p). The choice of one style over the other is purely up to taste.

72

`Lexer`

Whitespace-Sensitive Languages and Lexer.space

Normally, the whitespace definitions used by lexeme are fixed as described by the

LexicalDesc.spaceDesc; accounting for the comments and spaces themselves. However, some

languages, like Python and Haskell do not have constant definitions of whitespace: for instance,

inside a pair of parentheses, newline characters are no longer considered for the current indentation.

To support this, parsley allows for the space definition to be locally altered during parsing

if LexicalDesc.spaceDesc.whitespaceIsContextDependent is set to true: this may impact the

performance of the parser.


If the LexicalDesc.spaceDesc.whitespaceIsContextDependent flag is turned on it is crucial

that either the Lexer.fully combinator is used, or Lexer.space.init is ran as the very first

thing the top-level parser does. Without this, the context-dependent whitespace will not be set-up

correctly!

In this mode, it is possible to use the lexer.space.alter combinator to temporarily change the definition

of whitespace (but not comments) within the scope of a given parser. As an example:

val withNewline = Basic(_.isSpace)
val expr = ... | "(" ~> lexer.space.alter(withNewline)(expr) <~ ")"

For the duration of that nested expr call, newlines are considered regular whitespace. This, of course, is

assuming that newlines were not considered whitespace under normal conditions.

73

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/SpaceDesc.html

`descriptions`

Configuring the Lexer
(parsley.token.descriptions)

The Lexer is configured primarily by providing it a LexicalDesc. This is a structure built up of many

substructures that each configure a specific part of the overall functionality available. In general, many

parts of this hierarchy have "sensible defaults" in the form of their plain value within their companion

objects; these document what choices were made in each individual case. There may also be some values

crafted to adhere to some specific language specification; for instance, EscapeDesc.haskell describes

escape characters that adhere to the Haskell Report.

This page does not aim to document everything that is configurable within LexicalDesc, but it will outline

the general design and how things slot together.

Diagram of Dependencies

The hierarchy of types involved with lexical configuration can be daunting. The following diagram

illustrates both the "has-a" and "is-a" relationships between the types. For instance, TextDesc contains

an EscapeDesc, and NumericEscape may be implemented by either NumericEscape.Illegal or

NumericEscape.Supported.

The types in the diagram that have alternative implements are as follows:

• BreakDescChar: used to describe whether or not numeric literals can contain meaningless "break

characters", like _. It can either be NoBreakChar, which disallows them; or Supported, which will specify

the character and whether it is legal to appear after a non-decimal prefix like hexadecimal 0x.

• PlusSignPresence: used to describe whether or not a + is allowed in numeric literals, which appears

for the start of numeric literals and floating-point exponents. It can either be Required, which means

either a + or - must always be written; Optional, which means a + can be written; or Illegal, which

means only a - can appear.

• ExponentDesc: used to describe how an exponent is formed for different bases of floating point literals.

It can either be Supported, in which case it will indicate whether it is compulsory, what characters can

start it, what the numeric base of the exponent number itself is, and then what the PlusSignPresence

is, as above; otherwise, it is NoExponents, which means that the exponent notation is not supported for

a specific numeric base.

74

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/descriptions/LexicalDesc.html

`descriptions`

• NumericEscape: used to describe whether or not numeric escape sequences are allowed in string and

character literals. It either be Illegal, which means there are no numeric escapes; or Supported,

which means that the prefix, NumberOfDigits, and the maximum value of the escape must all be

specified.

• NumberOfDigits: used by the above NumericEscape to determine how many digits can appear within

a numeric escape literal. These can be one of: Unbounded, which means there can be any well-formed

number as the escape; AtMost, which puts an upper limit on the number of digits that can appear;

or Exactly, which details one or more exact numbers of digits that could appear, for instance, some

languages allow for numeric escapes with exactly 2, 4, or 6 digits in them only.

75

`errors`

Configuring Errors
(parsley.token.errors)

The default error messages generated by the parsers produced by the Lexer are ok, but can be much

improved.

errors.ErrorConfig

The ErrorConfig class is where all the configuration for error messages generated by the Lexer resides.

Everything in this class will have a default implementation (nothing is abstract); this ensures easy

backwards compatibility. Each of the configurations inside takes one of the following forms:

• A plain String argument, usually indicating a name of a compulsory label.

• A LabelConfig, which can either be unconfigured, hidden, or a regular label name.

• A LabelWithExplainConfig, which augments the previous configuration to also allow for a reason to

be added, if desired.

• A FilterConfig, or one of its specific subtypes, which can be used to handle the messages for ill-

conforming data.

• A special configuration, which is used for very specific error messages, usually arising from one of the

more advanced error patterns (see Advanced Error Messages)

Configuring Labels and Explains

Labels are one of the most common additional error configurations that can be applied throughout the

pre-made lexer parsers. Some, but not all, of these labels can be configured to also produce a reason if

the configuree cannot be parsed (either for why it should be there or what it requires). The hierarchy of

components is visualised by the following UML diagram:

Broadly, a component may either be marked as a LabelWithExplainConfig, which means it can contain

either labels, reasons, or both; LabelConfig if a reason wouldn't make sense; and a ReasonConfig if it

does not make sense to name.

Configuring Labels

Adding a label can be one of the following:

76

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/token/errors/ErrorConfig.html

`errors`

• Label: this labels the corresponding parser with one or more labels -- this also applies for

LabelAndReason.

• Hidden: this suppresses any error messages arising from the corresponding parser.

• NotConfigured: this doesn't alter the error messages from the corresponding parser.

Adding Explanations

Adding an explanation can be one of the following:

• Reason: this adds a reason for the corresponding parser though doesn't change the labelling -- unless

LabelAndReason is used instead.

• NotConfigured: this doesn't alter the error messages from the corresponding parser.

Configuring Filtering

Some parsers perform filtering on their results, for instance checking if a numeric literal is within a certain

bit-width. The messages generated when these filters fail is controled by the FilterConfig[A], where A is

the type of value being filtered. The below diagram shows how the various sub-configurations are laid out.

Some filters within the Lexer are best left as a specialised or vanilla error, which is why the hierarchy is

constrained. Other than that, the various leaf classes allow for various combinations of adding reasons,

altering the unexpected message, or bespoke error messages. The BasicFilter here does not attach

any special error messages to the filtering, having the effect of just using the basic filter combinator

internally.

Special Configuration

Some parts of the error configuration for the Lexer are special. In particular, these are

preventRealDoubleDroppedZero and the two verifiedXBadCharsUsedInLiteral (for both Char and

String). These provide very hand-crafted error messages for specific scenarios, based on the ideas of the

Preventative and Verified Errors patterns.

Preventing Double-Dropped Zero

When writing floating point literals, it is, depending on the configuration, possible to write .0,

say, or 0.. However, it should not be possible to have the literal . on its own! Overriding

preventRealDoubleDroppedZero is the way to prevent this, and provide a good error message in the

process. There are a few options:

77

`errors`

• UnexpectedZeroDot: sets an unexpected message when just . is seen to be the given string.

• ZeroDotReason: does not set an unexpected message, but adds a reason explaining why . is illegal.

• UnexpectedZeroDotWithReason: combines both above behaviours.

• ZeroDotFail: throws an error with the given bespoke error messages.

Preventing Bad Characters in Literals

When writing string and character literals, some characters may be considered illegal. For instance,

a langauge may not allow " to appear unescaped within a character literal. To help make it

clear why a character was rejected by the parser, verifiedCharBadCharsUsedInLiteral and

verifiedStringBadCharsUsedInLiteral allow for fine-grained error messages to be generated when

an illegal character occurs. There are a few options:

• BadCharsFail takes a Map[Int, Seq[String]] from unicode characters to the messages to generate

if one of the keys was found in the string.

• BadCharsReason takes a Map[Int, String] from unicode characters to the reason they generate if

they are found in the string.

• Unverified does no additional checks for bad characters.

78

`combinator`

Error Message Combinators

Aside from the failures generated by character consumption, parsley has many combinators for both

generating failures unconditionally, as well as augmenting existing errors with more information. These

are found within the parsley.errors.combinator module.


The Scaladoc for this page can be found at parsley.errors.combinator.

Failure Combinators

Normally, failures can be generated by empty, satisfy, string, and notFollowedBy; as well as their

derivatives. However, those do not capture the full variety of "unexpected" parts of error messages. In the

below table, empty corresponds to empty(0) (these are both found in parsley.Parsley). The named items

are produced by unexpected combinators, and wider carets of empty items can be obtained by passing

wider values to empty. This is summarised in the table below.

Caret empty raw/eof named

0 empty(0) n/a unexpected(0, _)

1 empty(1) satisfy unexpected(1, _)

n empty(n) string unexpected(n, _)

The unexpected Combinator

The unexpected combinator fails immediately, but produces a given name as the unexpected component

of the error message with a caret as wide as the given integer. For instance:

import parsley.character.char
import parsley.errors.combinator.unexpected

unexpected(3, "foo").parse("abcd")
// res0: Result[String, Nothing] = Failure((line 1, column 1):
// unexpected foo
// >abcd
// ^^^)
(char('a') | unexpected("not an a")).parse("baa")
// res1: Result[String, Char] = Failure((line 1, column 1):
// unexpected not an a

79

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/errors/combinator$.html

`combinator`

// expected "a"
// >baa
// ^)

There are a few things to note about the above examples:

• Just using unexpected alone does not introduce any other components, like expected items, to the

error

• When the caret width is unspecified, it will adapt to whatever the caret would have been for the error

message

• The named items resulting from the combinator dominate other kinds of item, so that char('a')'s

natural "unexpected 'a'" disappears

The fail Combinator

In contrast to the unexpected combinator, which produces vanilla errors, the fail combinator produces

specialised errors, which suppress all other components of an error in favour of some specific messages.

import parsley.character.string
import parsley.errors.combinator.fail

fail(2, "msg1", "msg2", "msg3").parse("abc")
// res2: Result[String, Nothing] = Failure((line 1, column 1):
// msg1
// msg2
// msg3
// >abc
// ^^)
(fail(1, "msg1") | fail(2, "msg2") | fail("msg3")).parse("abc")
// res3: Result[String, Nothing] = Failure((line 1, column 1):
// msg1
// msg2
// msg3
// >abc
// ^^)
(fail("msg") | string("abc")).parse("xyz")
// res4: Result[String, String] = Failure((line 1, column 1):
// msg
// >xyz
// ^^^)
(fail(1, "msg") | string("abc")).parse("xyz")
// res5: Result[String, String] = Failure((line 1, column 1):
// msg
// >xyz
// ^)

80

`combinator`

Notice that if a caret width is specified, it will override any other carets from other combinators, like

string. Not specifying a caret is adaptive. The fail combinator also suppressed other error messages,

and merges within itself as if all the messages were generated by one fail.

Error Enrichment

Other than the freestanding combinators, some combinators are enabled by importing

parsley.errors.combinator.ErrorMethods. Some of these are involved with augmenting error

messages with additional information. These are discussed below.


None of the combinators in this section have any effect on fail or its derivatives.

The label Combinator

When combinators that read characters fail, they produce "expected" components in error messages:

import parsley.character.{char, string, satisfy}

char('a').parse("b")
// res7: Result[String, Char] = Failure((line 1, column 1):
// unexpected "b"
// expected "a"
// >b
// ^)
string("abc").parse("xyz")
// res8: Result[String, String] = Failure((line 1, column 1):
// unexpected "xyz"
// expected "abc"
// >xyz
// ^^^)
satisfy(_.isDigit).parse("a")
// res9: Result[String, Char] = Failure((line 1, column 1):
// unexpected "a"
// >a
// ^)

Notice that the satisfy combinator cannot produce an expected item because nothing is known about

the function passed in. The other two produce raw expected items. The label combinator can be used to

replace these and generate named items. This is employed by parsley.character for its more specific

parsers:

81

`combinator`

import parsley.errors.combinator.ErrorMethods

val digit = satisfy(_.isDigit).label("digit")
// digit: Parsley[Char] = parsley.Parsley@4adb4f8a
digit.parse("a")
// res10: Result[String, Char] = Failure((line 1, column 1):
// unexpected "a"
// expected digit
// >a
// ^)

The label combinator above has added the label digit to the parser. If there was an existing label there,

it would have been replaced.


A label combinator cannot be provided with "". In other libraries, this may represent hiding,

however in parsley, the hide combinator is distinct.

A label combinator, along with other combinators, only applies if the error message properly lines up with

the point the input was at when it entered the combinator - otherwise, the label may be inaccurate. For

example:

val twoDigits = (digit *> digit).label("two digits")
// twoDigits: Parsley[Char] = parsley.Parsley@778aa11f
twoDigits.parse("a")
// res11: Result[String, Char] = Failure((line 1, column 1):
// unexpected "a"
// expected two digits
// >a
// ^)
twoDigits.parse("1a")
// res12: Result[String, Char] = Failure((line 1, column 2):
// unexpected "a"
// expected digit
// >1a
// ^)

The explain Combinator

The explain combinator allows for the addition of further lines of error message, providing more high-

level reasons for the error or explanations about a syntactic construct. It behaves similarly to label in that

it will only apply when the position of the error message matches the offset that the combinator entered at.

82

`combinator`

import parsley.character.digit
import parsley.errors.combinator.ErrorMethods

digit.explain("a digit is needed, for some reason").parse("a")
// res14: Result[String, Char] = Failure((line 1, column 1):
// unexpected "a"
// expected digit
// a digit is needed, for some reason
// >a
// ^)


A explain combinator cannot be provided with "".

The hide Combinator

Sometimes, a parser should not appear in an error message. A good example is whitespace, which is almost

never the solution to any parsing problem, and would otherwise distract from rest of the error content.

The hide combinator can be used to suppress a parser from appearing in the rest of a message:

import parsley.character.{char, digit}
import parsley.errors.combinator.ErrorMethods

(char('a') | digit.hide).parse("b")
// res16: Result[String, Char] = Failure((line 1, column 1):
// unexpected "b"
// expected "a"
// >b
// ^)

Error Adjustment Combinators

The previous combinators in this page have been geared at adding additional richer information to the

parse errors. However, these combinators are used to adjust the existing information, mostly relating to

position, to ensure the error remains specific.

The amend Combinator

The amend combinator can adjust the position of an error message so that it occurs at an earlier position.

This means that it can be affected by other combinators like label and explain. This is a precision tool,

designed for fine-tuning error messages.

83

`combinator`

import parsley.errors.combinator.amend

amend(digit *> char('a')).parse("9b")
// res17: Result[String, Char] = Failure((line 1, column 1):
// unexpected "9"
// expected "a"
// >9b
// ^)

Notice that the above error makes no sense. This is why amend is a precision tool: it should ideally be used

in conjunction with other combinators. For instance:

import parsley.syntax.character.given
import parsley.combinator.choice
import parsley.character.{noneOf, stringOfMany}

val escapeChar = choice('n'.as('\n'), 't'.as('\t'), '\"', '\\')
val strLetter = noneOf('\"', '\\').label("string char")
 | ('\\' ~> escapeChar).label("escape char")
val strLit = '\"' ~> stringOfMany(strLetter) <~ '\"'

strLit.parse("\"\\b\"")
// res18: Result[String, String] = Failure((line 1, column 3):
// unexpected "b"
// expected """, "\", "n", or "t"
// >"\b"
// ^)

In the above error, it is not entirely clear why the presented characters are expected. Perhaps it would be

better to highlight a correct escape character instead? The amend combinator can be used in this case to

pull the error back and rectify it:

val strLetter = noneOf('\"', '\\').label("string char") |
 amend('\\' ~> escapeChar).label("escape char")

strLit.parse("\"\\b\"")
// res19: Result[String, String] = Failure((line 1, column 2):
// unexpected "\"
// expected escape char or string char
// >"\b"
// ^)

While the amend has pulled the error back, and thanks to the label the error is still sensible, it could be

improved by widening the caret and providing an explanation:

84

`combinator`

import parsley.Parsley.empty
val escapeChar = choice('n'.as('\n'), 't'.as('\t'), '\"', '\\') | empty(2)
val strLetter = noneOf('\"', '\\').label("string char")
 | amend('\\' ~> escapeChar)
 .label("escape char")
 .explain("escape characters are \\n, \\t, \\\", or \\\\")

strLit.parse("\"\\b\"")
// res20: Result[String, String] = Failure((line 1, column 2):
// unexpected "\b"
// expected escape char or string char
// escape characters are \n, \t, \", or \\
// >"\b"
// ^^)

Note, an unexpected could also have been used instead of empty to good effect.

The entrench and dislodge Combinators

The amend combinator will indiscriminately adjust error messages so thay they occur earlier. However,

sometimes only errors from some parts of a parser should be repositioned. The entrench combinator

protects errors from within its scope from being amended, and dislodge undoes that protection.

This can be useful if you want an error to be able to dominate another one, and then be amended afterwards,

without affecting the original error. This normally has the following pattern:

val p = amendThenDislodge(1) {
 entrench(q) | r
}

In this example, we believe that r will produce errors deeper than qs, but after it discards qs message should

be reset to an earier point. On the other hand, q is protected from the initial amendment, but then is free

to be amended again after the dislodge has removed the protection.

The markAsToken Combinator

The markAsToken combinator will assign the "lexical" property to any error messages that happen within

its scope at a deeper position than the combinator began at. This is fed forward onto the unexpectedToken

method of the ErrorBuilder: more about this in lexical extraction.

85

`patterns`

Error Message Patterns

The combinators discussed in parsley.errors.combinator are useful for changing the contents of an

error message, but they do not account for any contextual obligations a more carefully crafted error might

have. Ensuring that error messages are valid in the context in which they occurred is the job of the Verified

Errors and Preventative Errors parsing design patterns. These are both encoded in parsley as combinators

within parsley.errors.patterns.


The Scaladoc for this page can be found at parsley.errors.patterns.

Verified Errors

When a hand-tailored reason for a syntax error relies on some future input being present, a verified error

can be used to ensure these obligations are met. These errors, called error widgets, will have the following

properties:

• have type Parsley[Nothing], ensuring that it is guaranteed to fail

• produce errors that are rooted at the start of the widget

• generate a caret as wide as the problematic input

• if the problematic parser succeeds having consumed input, the widget consumes input

• if the problematic parser fails, it does not consume input or influence the error message of the

surrounding parser in any way

The "problematic parser" referred to above is what will be parsed to try and verify that the

requirements for the error messages are met. Any widget that meets these five properties is likely

already a verified error, however, they can be satisfied by the combinators enabled by importing

parsley.errors.patterns.VerifiedErrors -- this is the focus of this page.

Each of the verifiedX combinators try a parse something, and if it succeeds will generate an error based

on the result. If it could not be parsed, they will generate an empty error. Each different combinator will

generate an error with different content. As examples (in isolation of surrounding content):

import parsley.errors.patterns.VerifiedErrors
import parsley.character.char

// assume that a `lexer` is available
val float = lexer.nonlexeme.floating.decimal
// float: Parsley[BigDecimal] = parsley.Parsley@43f52d7a
val _noFloat =

86

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/errors/patterns$.html

`patterns`

 float.verifiedExplain("floating-point values may not be used as array
 indices")
// _noFloat: Parsley[Nothing] = parsley.Parsley@52b7bef9

_noFloat.parse("hello")
// res0: Result[String, Nothing] = Failure((line 1, column 1):
// unknown parse error
// >hello
//)
_noFloat.parse("3.142")
// res1: Result[String, Nothing] = Failure((line 1, column 1):
// unexpected "3.142"
// floating-point values may not be used as array indices
// >3.142
// ^^^^^)

val int = lexer.nonlexeme.unsigned.decimal
// int: Parsley[BigInt] = parsley.Parsley@3955f118
val _noPlus = (char('+') ~> int).verifiedFail { n =>
 Seq(s"the number $n may not be preceeded by \"+\"")
}
// _noPlus: Parsley[Nothing] = parsley.Parsley@6e7e4ab8
_noPlus.parse("+10")
// res2: Result[String, Nothing] = Failure((line 1, column 1):
// the number 10 may not be preceeded by "+"
// >+10
// ^^^)

Occasionally, there may need to be more fine-grained control over the errors. In these cases, the most

generic version of the combinator is verifiedWith, which takes an ErrorGen object. For instance, perhaps

the focus of the last error above should only be the +. In which case, the caret must be adjusted by an

ErrorGen object -- this can either be VanillaGen or SpecializedGen.

import parsley.errors.SpecializedGen
val _noPlus = (char('+') ~> int).verifiedWith {
 new SpecializedGen[BigInt] {
 def messages(n: BigInt): Seq[String] =
 Seq("a number may not be preceeded by \"+\"")
 override def adjustWidth(x: BigInt, width: Int) = 1
 }
}
// _noPlus: Parsley[Nothing] = parsley.Parsley@ec6513f
_noPlus.parse("+10")
// res3: Result[String, Nothing] = Failure((line 1, column 1):
// a number may not be preceeded by "+"
// >+10
// ^)

87

`patterns`

In the above, the width parameter would have been the original determined size, which would have been

3 based on the other error message. A VanillaGen would also have the ability to change the unexpected

message:

import parsley.errors.VanillaGen
val _noFloat = float.verifiedWith {
 new VanillaGen[BigDecimal] {
 override def reason(x: BigDecimal): Option[String] =
 Some("floats may not be array indices")
 override def unexpected(x: BigDecimal): VanillaGen.UnexpectedItem = {
 VanillaGen.NamedItem("floating-point number")
 }
 }
}
// _noFloat: Parsley[Nothing] = parsley.Parsley@757748ba

_noFloat.parse("3.142")
// res4: Result[String, Nothing] = Failure((line 1, column 1):
// unexpected floating-point number
// floats may not be array indices
// >3.142
// ^^^^^)

Preventative Errors

The verified error pattern can only be applied as part of a chain of alternatives. However, if the alternatives

are spread far apart, this can make the pattern cumbersome to use. Instead, a preventative error seeks to

rule out bad inputs not as a last resort, but eagerly as soon as it might become possible to do so. Widgets

following this pattern have the following properties:

• succeed if the problematic parser does not succeed, returning Unit

• produce errors that are unconditionally rooted at the start of the widget

• generate a caret as wide as the problematic input

• if the problematic parser succeeds having consumed input, this widget must consume input

• if the problematic parser fails, it should not consume input nor influence any errors generated

afterwards

Similarly to verified errors, preventative errors can have many forms but the most common are embodied by

the combinators available by importing parsley.errors.patterns.PreventativeErrors.

Unlike, verifiedX, preventativeX will try and parse something, and succeed if that fails. This makes it

similar to notFollowedBy, but that alone does not have all the desired properties. As an example:

import parsley.errors.patterns.PreventativeErrors

88

`patterns`

val ident = lexer.nonlexeme.names.identifier
// ident: Parsley[String] = parsley.Parsley@1b7f68f4
val _noDot = (char('.') ~> ident).preventativeFail { v =>
 Seq(s"accessing field $v is not permitted here")
}
// _noDot: Parsley[Unit] = parsley.Parsley@2c3c9961
_noDot.parse("hi")
// res5: Result[String, Unit] = Success(())
_noDot.parse(".foo")
// res6: Result[String, Unit] = Failure((line 1, column 1):
// accessing field foo is not permitted here
// >.foo
// ^^^^)

There are also vanilla variants too (and one for ErrorGen). However, these also allow for additional

optional labels to be provided to describe valid alternatives that would have been successful from this

point. This is useful, since parsers that follow from this point will not be parsed and cannot contribute their

own labels. It is for this reason, that the verified error pattern is more effective if it possible to use.

89

`ErrorBuilder`

Constructing Custom Errors

By default, parsley returns errors that consist of String-based content. However, it is possible to build

error messages into a datatype or format that is user-defined. This is done with the ErrorBuilder

typeclass.

The ErrorBuilder is pulled in implicitly by the parse method of the Parsley type:

class Parsley[A] {
 def parse[Err: ErrorBuilder](input: String): Result[Err, A]
}

This is equivalent to having an implicit parameter of type ErrorBuilder[Err]. As the ErrorBuilder

companion object has an implicit value of type ErrorBuilder[String] only, the type String is chosen

as the default instantiation of Err by Scala. Providing another ErrorBuilder implicit object in a tighter

scope (or adding an explicit type ascription with another implicit object available), you are able to hook in

your own type instead.

This page describes how the ErrorBuilder is structured, and gives an example of how to construct a lossy

type suitable for unit testing generated error messages.


The Scaladoc for this page can be found at parsley.errors.ErrorBuilder.

Error Message Structure

Error messages within parsley take two different forms: vanilla or specialised. The error chosen depends

on the combinators used to produce it: empty, unexpected, char, string, etc all produce vanilla errors;

and fail and its derivatives produce specialised errors. An ErrorBuilder must describe how to build both

kinds of error; their structure is explained below.

Vanilla Errors

┌───┐
│ ┌────────────────┐◄──────── position │
│ source │ │ │
│ │ │ line col│ │
│ ▼ │ │ ││ │
│ ┌─────┐ │ ▼ ▼│ end of input │
│ In foo.txt (line 1, column 5): │ │
│ ┌─────────────────────┐ │ │

90

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/errors/ErrorBuilder.html

`ErrorBuilder`

│unexpected ─────►│ │ │ ┌───── expected │
│ │ ┌──────────┐ ◄──────────┘ │ │
│ unexpected end of input ▼ │
│ ┌──────────────────────────────────────┐ │
│ expected "(", "negate", digit, or letter │
│ │ └──────┘ └───┘ └────┘ ◄────── named│
│ │ ▲ └──────────┘ │ │
│ │ │ │ │
│ │ raw │ │
│ └─────────────────┬───────────┘ │
│ '-' is a binary operator │ │
│ └──────────────────────┘ │ │
│ ┌──────┐ ▲ │ │
│ │>3+4- │ │ expected items │
│ │ ^│ │ │
│ └──────┘ └───────────────── reason │
│ ▲ │
│ │ │
│ line info │
└───┘

A vanilla error consists of three unique components: the unexpected component, which describes the

problematic token; the expected component, which describes the possible parses that would have avoided

the error; and the reason component, which gives additional context for an error. These are in addition

to parts shared with specialised errors: the source, position, and the lineInfo. Any of the three unique

components may be missing from the error, and the ErrorBuilder will need to be able to handle this.

Within both unexpected and expected, items can have one of three forms: named, which indicates they

came from labels; raw, which means they came directly from the input itself; and endOfInput, which means

no more input was available. All three of these states can be formatted independently.

Specialised Errors

┌───┐
│ ┌────────────────┐◄──────── position │
│ source │ │ │
│ │ │ line col │
│ ▼ │ │ │ │
│ ┌─────┐ │ ▼ ▼ │
│ In foo.txt (line 1, column 5): │
│ │
│ ┌───► something went wrong │
│ │ │
│ message ──┼───► it looks like a binary operator has no argument │
│ │ │
│ └───► '-' is a binary operator │
│ ┌──────┐ │
│ │>3+4- │ │

91

`ErrorBuilder`

│ │ ^│ │
│ └──────┘ │
│ ▲ │
│ │ │
│ line info │
└───┘

In contrast to the vanilla error, specialised errors have one unique component, messages, which is zero or

more lines of bespoke error messages generated by fail combinators.

The ErrorBuilder Typeclass

Within the ErrorBuilder trait, there is a number of undefined type aliases. Each of these must be

implemented by an extender and provide an internal type to represent different components within the

system. These are used to ensure maximal flexiblity of the user to pick how each component should be

represented without exposing unnecessary information into the rest of the system.

After these types are specified, the methods of the typeclass can be implemented. These put together the

primtive-most components and compose them into the larger whole. The documentation of the typeclass

details the role of these well enough, however. For example's sake, however, these are the two shapes of

call that will be made for the different types of error messages:

Vanilla

val builder = summon[ErrorBuilder[String]]
val err = builder.build (
 builder.pos(1, 5),
 builder.source(None),
 builder.vanillaError (
 builder.unexpected(Some(builder.endOfInput)),
 builder.expected (
 builder.combineExpectedItems(Set (
 builder.raw("("),
 builder.raw("negate"),
 builder.named("digit"),
 builder.named("letter")
))
),
 builder.combineMessages(List(
 builder.reason("'-' is a binary operator")
)),
 builder.lineInfo("3+4-", Nil, Nil, 1, 4, 1)
)
)

(line 1, column 5):

92

`ErrorBuilder`

 unexpected end of input
 expected "(", "negate", digit, or letter
 '-' is a binary operator
 >3+4-
 ^

One builder call not shown here, is a call to builder.unexpectedToken. This is a bigger discussion and is

deferred to Token Extraction in ErrorBuilder

Specialised

val builder = summon[ErrorBuilder[String]]
val err = builder.build (
 builder.pos(2, 6),
 builder.source(Some("foo.txt")),
 builder.specializedError (
 builder.combineMessages(List(
 builder.message("first message"),
 builder.message("second message"),
)),
 builder.lineInfo("second line",
 List("first line of input"),
 List("third line", "fourth line"),
 2,
 5,
 3)
)
)

In file 'foo.txt' (line 2, column 6):
 first message
 second message
 >first line of input
 >second line
 ^^^
 >third line
 >fourth line

Constructing Test Errors

As an example of how to construct an ErrorBuilder for a type, consider the following representation of

TestError:

case class TestError(pos: (Int, Int), lines: TestErrorLines)

sealed trait TestErrorLines
case class VanillaError(

93

`ErrorBuilder`

 unexpected: Option[TestErrorItem],
 expecteds: Set[TestErrorItem],
 reasons: Set[String]) extends TestErrorLines
case class SpecializedError(msgs: Set[String]) extends TestErrorLines

sealed trait TestErrorItem
case class TestRaw(item: String) extends TestErrorItem
case class TestNamed(item: String) extends TestErrorItem
case object TestEndOfInput extends TestErrorItem

This type, as will become evident from the builder derived from it, is lossy and does not perfectly encode

all the information available. Notice that TestErrorItem is a supertype of TestRaw, TestNamed, and

TestEndOfInput: this is required, as the representation of each must all share a common supertype.

To construct an ErrorBuilder[TestError], the type aliases must first be filled in:

class TestErrorBuilder extends ErrorBuilder[TestError] {
 type Position = (Int, Int)
 type Source = Unit
 type ErrorInfoLines = TestErrorLines
 type Item = TestErrorItem
 type Raw = TestRaw
 type Named = TestNamed
 type EndOfInput = TestEndOfInput.type
 type Message = String
 type Messages = Set[String]
 type ExpectedItems = Set[TestErrorItem]
 type ExpectedLine = Set[TestErrorItem]
 type UnexpectedLine = Option[TestErrorItem]
 type LineInfo = Unit
 //...
}

These types can be determined by examining the shape of TestError: for bits that it doesn't work, these

are set to Unit. With these in place, the refined types of the typeclass methods make it very easy to fill in

the gaps:

class TestErrorBuilder extends ErrorBuilder[TestError] {
 //...
 def build(pos: (Int, Int), source: Unit,
 lines: TestErrorLines): TestError = TestError(pos, lines)
 def vanillaError(
 unexpected: Option[TestErrorItem],
 expected: Set[TestErrorItem],
 reasons: Set[String],
 line: Unit
): TestErrorLines = VanillaError(unexpected, expected, reasons)
 def specializedError(

94

`ErrorBuilder`

 msgs: Set[String],
 line: Unit
): TestErrorLines = SpecializedError(msgs)
 def pos(line: Int, col: Int): (Int, Int) = (line, col)
 def source(sourceName: Option[String]): Unit = ()
 def combineExpectedItems(alts: Set[TestErrorItem]): Set[TestErrorItem]
 = alts
 def combineMessages(alts: Seq[String]): Set[String] = alts.toSet
 def unexpected(item: Option[TestErrorItem]): Option[TestErrorItem] = item
 def expected(alts: Set[TestErrorItem]): Set[TestErrorItem] = alts
 def message(msg: String): String = msg
 def reason(msg: String): String = msg
 def raw(item: String): TestRaw = TestRaw(item)
 def named(item: String): TestNamed = TestNamed(item)
 val endOfInput: TestEndOfInput.type = TestEndOfInput

 val numLinesAfter: Int = 0
 val numLinesBefore: Int = 0
 def lineInfo(
 line: String,
 linesBefore: Seq[String],
 linesAfter: Seq[String],
 lineNum: Int, errorPointsAt: Int, errorWidth: Int
): Unit = ()

 // The implementation of this is usually provided by a mixed-in
 // token extractor, discussed in `tokenextractors`
 def unexpectedToken(
 cs: Iterable[Char],
 amountOfInputParserWanted: Int,
 lexicalError: Boolean
): Token = ???
}

Each of the methods above do the bare minimum work to satisfy the types. As noted in the comment, the

implementation of unexpectedToken is usually done by mixing in a token extractor, which is explained here.

95

`tokenextractors`

Token Extraction in ErrorBuilder

When vanilla error messages are generated internally to parsley, the unexpected component is usually

derived from the raw input, or a name explicitly given to an unexpected combinator. However, that does

not necessarily provide the most informative or precise error messages.

Instead, the ErrorBuilder typeclass has an unexpectedToken method that can be used to determine how

the token should be formulated in the event that it would have otherwise come raw from the input. Its

signature is as follows:

def unexpectedToken(
 cs: Iterable[Char],
 amountOfInputParserWanted: Int,
 lexicalError: Boolean
): Token

The first argument, cs, is the input from the point that the bad input was found; the second is the amount

of input the parser tried to read when it failed; and lexicalError denotes whether or not the failure

happened whilst trying to parse a token from Lexer, or not. The return value, of type Token, is one of the

following classes:

case class Named(name: String, span: Int) extends Token
case class Raw(tok: String) extends Token

A Raw token indicates no further processing of the input could occur to get a better token, and some is

returned verbatim. Otherwise, a Named token can replace a raw token with something derived from the

input -- the span here denotes how wide that token had been determined to be.

The idea is that unexpectedToken should examine the provided arguments and determine if a more

specific token can be extracted from the residual input, or, if not, produce a final Raw token of the desired

width. In practice, while a user could implement the unexpectedToken method by hand, parsley provides

a collection of token extractors that can be mixed-in to an ErrorBuilder to implement it instead.

Basic Extractors

There are three basic extractors available in parsley: SingleChar, MatchParserDemand, and

TillNextWhitespace. Each is discussed below. Each of them have special handling for whitespace

characters and ones that are unprintable, which are given names.

96

`tokenextractors`

SingleChar

This extractor simply takes the first codepoint of the input stream cs and returns it. A codepoint is a single

unicode character, which may consist of one or two bytes. As an example, the default formatting may be

instantiated with this extractor by writing:

import parsley.errors.DefaultErrorBuilder
import parsley.errors.tokenextractors.SingleChar

val builder = new DefaultErrorBuilder with SingleChar

MatchParserDemand

This extractor, as its name suggests, takes more than a single codepoint from the input, instead taking as

many as the parser has requested via the amountOfInputParserWanted argument. As an example, the

default formatting may be instantiated with this extractor by writing:

import parsley.errors.DefaultErrorBuilder
import parsley.errors.tokenextractors.MatchParserDemand

val builder = new DefaultErrorBuilder with MatchParserDemand

TillNextWhitespace

Unlike the other extractors, this one has additional configuration. It generally aims to take as much input

as necessary to find the next the next whitespace character, which can be changed by overriding the

isWhitespace method. However, this can be capped as the minimum of the input the parser demanded or

until the next whitespace. As an example, the default formatting may be instantiated with this extractor

by writing:

import parsley.errors.DefaultErrorBuilder
import parsley.errors.tokenextractors.TillNextWhitespace

val builder = new DefaultErrorBuilder with TillNextWhitespace {
 def trimToParserDemand = true
}

This extractor, with trimToParserDemand = true is the default currented used by parsley for all error

messages. By default, isWhitespace matches any character c for which c.isWhitespace is true.

97

`tokenextractors`

Lexer-backed Extraction

The default strategies outlined above all ignore the lexicalError flag passed to unexpectedToken. To

provide a more language-directed token extraction, however, the LexToken extractor is also provided.

It has one compulsory configuration and two more that have defaults:

trait LexToken {
 def tokens: Seq[Parsley[String]]
 def extractItem(cs: Iterable[Char], amountOfInputParserWanted: Int): Token
 = {
 SingleChar.unexpectedToken(cs)
 }
 def selectToken(matchedToks: List[(String, Int)]): (String, Int) = {
 matchedToks.maxBy(_._2)
 }
}

Here, the tokens are parsers for valid tokens within the language being parsed: each returns the name of

that token as it would be displayed in the error message. The extractor will try to parse all of these tokens,

and should at least one succeed the non-empty list of parsed tokens will be passed to selectToken for one

to be picked to be used in the error: by default, the one which is the widest is chosen. If no tokens could be

parsed, or the error occured during the parsing of a token/within the markAsToken combinator (as denoted

by lexicalError normally), then extractItem is used instead. This usually should defer to another kind

of token extractor, which, for convience, all expose their functionality in their companion objects.


The intention of the tokens sequence is that they should not consume whitespace: were they to do

so, this whitespace would form part of the generated token! When using Lexer to fill this sequence,

be sure to use lexer.nonlexeme to source the tokens.

As an example, a language which already has an available lexer built with lexical description desc can

implement a LexToken as follows:

98

`tokenextractors`

import parsley.errors.DefaultErrorBuilder
import parsley.errors.tokenextractors.LexToken

val builder = new DefaultErrorBuilder with LexToken {
 def tokens = Seq(
 lexer.nonlexeme.integer.decimal.map(n => s"integer $n"),
 lexer.nonlexeme.names.identifier.map(v => s"identifier $v")
) ++ desc.symbolDesc.hardKeywords.map { k =>
 lexer.nonlexeme.symbol(k).as(s"keyword $k")
 }
}

Obviously, this may not be an exhaustive list of tokens, but is illustrative of how to set things up.

99

Parser Combinator Tutorial

Parser Combinator Tutorial

Parsley is a parser combinator library. In contrast to a parser generator library, like ANTLR, this allows the

users to build their parsers as part of the host language: in this case Scala. This brings a huge amount of

power to the fingertips of the programmer, but, admittedly, embarking on the journey to learning how they

work is very intimidating! Personally, I think the pay-off is still great, and, really, it's quite hard to see why

until after you've tried it. The most important part is not being afraid to play with things.

This series of wiki posts aims to help guide you on your journey to learning parser combinators.

Unfortunately, while the fundamentals carry nicely over to other libraries, such as parsec, megaparsec

and so on in Haskell (and to a lesser extent the other Scala libraries, which admittedly have a slightly

different feel to them), learning a parser combinator library is still a specialism, and many of the helpful

abstractions and patterns that Parsley provides may not be available or even possible in some other

contexts.

Something I've learnt about this wiki is that people can take it fairly literally at each step instead of viewing

each page as a larger whole. The consequence is that some of the neat techniques that are presented later

in the series may have come too late, and users may have already implemented something the "long way".

My advice is to keep reading until the end before embarking on any serious work using the library. Of

course, you don't have to, but I've distilled years of knowledge into this wiki, and it would be a shame to miss

out on it. To try and make this process easier, I've added a road-map of sorts below, to help you understand

the whole story before you start it.

The Roadmap

Basics of Combinators

Our journey starts at the beginning: the very beginning. In many respects, this first post probably goes

into too much detail. However, I think it's very important to see the lower level primitives to be able to

understand the more powerful and convenient abstractions. In particular, the nuances of backtracking

can have a big effect on the error messages of even correct parsers, so understanding how and when

to backtrack is an important skill. That being said, the way that parsers are written in this post are not

representative of how parsers really should be written! Instead it demonstrates some recurring themes

and some of the most important ideas.

Building Expression Parsers (introduces expr.precedence)

By the end of the first post, the basic combinators, recursion and the main principles of combinators have

been demonstrated. However, the final example, which sees us write a parser for boolean expressions,

leaves much to be desired. For the uninitiated reader, they'll see nothing wrong with it, but as the second

page shows, there are much easier and more powerful tools at our disposal for working with expressions.

Again, this page starts by showing off the fundamental building blocks of the expression parser before

showing the more commonly used precedence combinator. The reason I chose to take this route is similar

100

Parser Combinator Tutorial

to before, it's good to be able to have a sense of how the more powerful tools were built up, and there are

often opportunities to use these combinators where a precedence (which takes the center stage) is just

a bit more clunky.

Be warned that this page doesn't re-introduce any of the material of the previous page, so if a combinator

is used without being explained, you can always check back to the first post (or the cheatsheet). Also you

should be aware that the latter half of the post gets a bit more technical than most people will a) need to

know and b) care about. The reason these sections were left in was to help the many people who don't like

to blindly accept concepts presented to them without having a, however basic, understanding of how it

works. If you're not one of those people, or you're otherwise not interested, then you can feel free to move

on to the next page at the section Path-Dependent Typing and Ops/Gops.

Effective Whitespace Parsing

By the third post, we take a (welcome) break from learning new combinators and concepts, and instead

discuss good parser design, and the best ways to deal with pesky whitespace in the input: from the first two

posts, we'll already have seen all the tools we need to write correct parsers, just not the best ways to do so.

Whitespace, simply put, is annoying because it distracts from the rest of the grammar. Normally, a lexer

is used to deal with whitespace, and the grammar more accurately describes the relationships between

tokens. The basic idea behind this page is to demonstrate how we can start to use Scala's features to

develop handy abstractions for ourselves that make whitespace disappear from the main parser. Again,

there are better tools for dealing with these issues than hand-rolling them ourselves, but in order to use

such tools effectively and really understand their implication, it's a very good idea to understand the

fundamentals: the fourth page more effectively deals with the issues highlighted in this page and uses some

of the techniques introduced, in the process refining them.

Effective Lexing (introduces Lexer)

The fourth post builds on the ideas of its predecessor, first outlining the general principles behind how we

write and structure the lexical parsers for our grammar, and then how to seemlessly integrate them into

the parser proper. The ideas here are very similar to those already laid out previously.

Unlike the third post, here the mighty Lexer class is introduced. While it's not always needed to write

parsers, its usefulness, even for just handling whitespace, can't be understated. It's not always the right

tool for the job though, so definitely don't disregard all the lessons presented before it!

The Parser Bridges Pattern (introduces position tracking with line, col, and pos)

This page takes a huge leap forward in terms of how parsers are designed and integrated with the

Abstract Syntax Trees they so often produce. An important (and often overlooked) aspect of parsing

with combinators is how position information in the parser is preserved in the generated structure. In

my experience, I've found this is often done as an afterthought, when the programmer realises that the

information is important: for instance, when performing Semantic Analysis in a compiler... And, usually, its

introduction makes a complete mess of an otherwise nice looking parser.

101

Parser Combinator Tutorial

The joy of the Parser Bridges pattern, which this page introduces, is that it separates the building of the AST

during parsing from whether or not that AST node needs position information, or indeed the mechanics

of putting together the components in the right way. This separation creates a pleasant cleanliness in the

main body of the grammar, which by this point now retains the simple elegance we might expect to see

with a plain old BNF representation. If you've been unconvinced so far that parser combinators look very

similar to the grammar they represent, this may change your perspective.

Interlude 1: Building a Parser for Haskell

By this point, you'll have covered a lot of information:

• Basics of what combinators are and what they are built from

• Cleanly handing expressions with varying precedence and associativities

• How to correctly deal with whitespace

• How to cleanly factor out lexing logic

• How to abstract away the construction of a resulting AST from the grammar

With this wealth of knowledge, you'll have the power to go and write all but the trickiest of parsers. To

demonstrate that, the first of three interludes will work through the structure and design of a (simplified)

Haskell parser with the tools we've accrued so far. Even though this will help consolidate everything you've

been shown by putting it all into practice, there is still a big chunk of the story missing: error messages.

Customising Error Messages (introduces label, explain, and ErrorBuilder)

With the mechanics of writing parsers that can succeed out of the way, it's about time to learn about how to

improve error messages that failing parsers produce. By default, the error messages, whilst not bad, aren't

nearly as they could be. The Lexer class does help with this for lexemes at least, but that doesn't mean all

the work is done: especially in the main grammar, or for times when Lexer was a no-go. Writing good error

messages is an art-form, and so this page takes a more subjective look at the process. For most people, this

is just about as far as you'd need to go.

The second part of this post explains how to use the ErrorBuilder mechanism in Parsley to customise

the format of error messages, or even change what type they have. This can be particularly useful for unit-

testing or for standardising parser error messages as part of a larger compiler.

Advanced Error Messages (introduces unexpected and fail)

The combinators introduced in the previous page are already pretty good! But there are still some neat

patterns we can use to kick it up a notch or two. In particular, this page introduces patterns that can be used

to anticipate common syntax errors and produce much more descriptive errors upon encountering them.

102

Parser Combinator Tutorial

Interlude 2: Adding Errors to the Haskell Parser

The second interlude takes the new-found lessons from the previous two pages to augment the Haskell

parser with error messages, illustrating the considerations and patterns in practice. The reason that

Interlude 1 comes before error messages is that, whilst they aren't particularly obstructive, the error

message combinators provide a little extra noise that makes the core part of the parser a little bit harder

to admire, especially for someone who is only getting to grips with the concepts for the very first time!

This, for almost all use-cases, the end of the story. By this point you'll have all the tools you need to

parse context-free grammars, which make up the vast majority of practical languages and data formats

and generate good error messages for them. If however, you are keen to learn about context-sensitive

grammars, or you are thoroughly engrossed in the story up to this point, there is one final stretch.

Indentation Sensitive Parsing

For most languages, the grammar is constructed in such a way that it remains context-free. This is,

primarily, because context-sensitive grammars are a brutal combination of hard to express and hard

to parse efficiently. Indentation-sensitive parsing can be considered an example of a context-sensitive

grammar, though, in practice, some compilers like to shunt the work out to the lexer to make the grammar

context-free again (this is the case with Python).

Using parser combinators though, context-sensitive grammars can be encoded comparatively naturally! In

most other combinator libraries, the flatMap (or >>=) combinator is used to deal with context-sensitivity.

However, in the Parsley family, the power that flatMap provides comes at a heavy cost to performance.

Instead, we reach for stateful parsers called "references", evoking images of register machines vs stack

machines: as we know, register machines are turing powerful, and can most certainly do the job, no matter

the parsing task.

This page provides a more concrete and gentle introduction to using references specifically demonstrating

how to use them to implement combinators for managing indentation-sensitive workloads in a clean and

effective way.

Interlude 3: Supporting the Haskell Offside Rule

As the final act of this series, the last "interlude" (by this point just a finale) takes the combinators built up in

the previous page to add the off-side rule to the Haskell parser: this is the essence of Haskell's indentation-

sensitive syntax.

103

Basics of Combinators

Basics of Combinators

Parsley is a parser combinator library. In contrast to a parser generator library, like ANTLR, this allows the

users to build their parsers as part of the host language: in this case Scala. This is called being an embedded

Domain Specific Language or eDSL. Practically, this is useful because it allows you to factor out repeated

parts of your grammars and make them reusable, as well as using all the language features normally at your

disposal to create the grammars too. This page will touch on both of those ideas. Another advantage is that

there is less boiler-plate compared with some parser generators: you don't need to convert between the

AST the generator produces and your own, you can parse straight into the desired type.

1 Basic Combinators and Sequencing

We'll start really basic: just reading a character or two and seeing how to combine the results using

combinators. For a first look, we will just parse one of any character. If you are familar with regex, this would

match the pattern (.).

import parsley.Parsley
import parsley.character.item

val p: Parsley[Char] = item

p.parse("a")
// res0: Result[String, Char] = Success(x = 'a')
p.parse("1")
// res1: Result[String, Char] = Success(x = '1')
p.parse("")
// res2: Result[String, Char] = Failure(
// ...

The Parsley type is the type of parsers. The type parameter Char here represents what type the parser

will return when it has been executed using parse(input). Soon we will see an example with a different

type. Parsers, when executed, return a Result[Err, A] for whatever A the parser returned: this is one of

Success containing the value or Failure containing an error message of type Err (by default this is String).

This is the basic workflow when using parsers. The item parser will read any single character, no matter

what (so long as there is one to read). It isn't particularly useful though, so lets match specific characters

instead and parse two of them this time. The regex for this would be (ab).

import parsley.Parsley
import parsley.character.char

val ab: Parsley[(Char, Char)] = char('a') <~> char('b')

104

https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Parsley.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Result.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Success.html
https://www.javadoc.io/doc/com.github.j-mie6/parsley_3/5.0.0-M18/parsley/Failure.html

Basics of Combinators

ab.parse("ab")
// res3: Result[String, Tuple2[Char, Char]] = Success(x = ('a', 'b'))
ab.parse("a")
// res4: Result[String, Tuple2[Char, Char]] = Failure(
// ...

A few new things have appeared in this new example. The char combinator is new: given a specific

character it will parse that character only. We'll see how you can define this and item in terms of another,

more general, combinator soon. Notice that the type of ab is no longer just a Parsley[Char], but a

Parsley[(Char, Char)]: this is due to the <~> (pronounced "zip") combinator with the following type (in

a pseudo-syntax, for simplicity).

(_ <~> _): (p: Parsley[A], q: Parsley[B]) => Parsley[(A, B)]

What this combinator does (pronounced "zip") is that it first parses p, then q afterwards and then combines

their results into a tuple. Suppose we had char('a') <~> char('b') <~> char('c') then this would

have type Parsley[((Char, Char), Char)]. This is the first example of a sequencing combinator. There

are two other combinators that look similar:

(_ ~> _): (p: Parsley[A], q: Parsley[B]) => Parsley[B]
(_ <~ _): (p: Parsley[A], q: Parsley[B]) => Parsley[A]

They are pronounced then and then discard respectively. Again, they both parse both p and then q, but

they only return the result they are "pointing" at. Notice that <~> points at both results. These are more

widely known as *> and <*, but they are otherwise identical, so use whatever resonates more strongly with

you. We'll see soon how we can define them in terms of <~> to get a sense of how combinators can be built

up in terms of more primitive ones.

1.1 What ties char and item together

We've seen both char and item can be used to read characters, there is, however, a more primitive one

which can be used to implement them both. This combinator is called satisfy and has the following type:

def satisfy(predicate: Char => Boolean): Parsley[Char]

def char(c: Char): Parsley[Char] = satisfy(_ == c)
val item: Parsley[Char] = satisfy(_ => true)

105

Basics of Combinators

The combinator satisfy takes a function, and will read a character when the predicate returns true on

that character, and fails otherwise. This makes satisfy a bit more versatile and it can be used to implement

a wide range of functionality. For example, we can implement a parser that reads digits using satisfy:

import parsley.Parsley
import parsley.character.satisfy

val digit = satisfy(_.isDigit)

digit.parse("1")
// res5: Result[String, Char] = Success(x = '1')
digit.parse("2")
// res6: Result[String, Char] = Success(x = '2')
digit.parse("a")
// res7: Result[String, Char] = Failure(
// ...

This is, however, already implemented by parsley.character.digit; parsley is very rich in terms of the

combinators it supports out of the box, so do hunt around before reinventing the wheel!

1.2 Changing the result type

It's all well and good being able to sequence together reading single characters, but this doesn't exactly

scale well to larger, more complex, parsers. Indeed, it's likely we aren't interested in an increasing deeply

nested tuple! A good starting point for this is the humble map combinator:

.map(): (p: Parsley[A], f: A => B) => Parsley[B]

This can be used to change the result of a parser p with the parser f, presumably into something more

useful. Let's see a couple of examples of this in action! Firstly, let's suppose we wanted our digit

combinator from before to return an Int instead of a Char...

import parsley.Parsley
import parsley.character.satisfy

val digit: Parsley[Int] = satisfy(_.isDigit).map(_.asDigit)

digit.parse("1")
// res8: Result[String, Int] = Success(x = 1)

106

Basics of Combinators

Here we can see that the digit parser is no longer type Parsley[Char] but type Parsley[Int]. This is

because the asDigit method on Char returns an Int. To reinforce how this works, let's see how ~> and <~

can be made out of a combination of <~> and map:

p ~> q == (p <~> q).map(_._2)
p <~ q == (p <~> q).map(_._1)

The first definition pairs p and q together, and then takes the second element of the pair with map, and

the second definition does the same but instead takes the first element of the pair. Now, using this tupling

approach paired with map, we can do a lot of stuff! However, there is a more general strategy to do this:

def lift2[A, B, C](f: (A, B) => C, p: Parsley[A], q: Parsley[B]): Parsley[C]

// pairs p and q's results together
p <~> q = lift2[A, B, (A, B)]((_, _), p, q)
// adds the result of p onto the list result of ps
p <::> ps = lift2[A, List[A], List[A]](_ :: _, p, ps)
// applies a function from pf onto the value from px
pf <*> px = lift2[A => B, A, B]((f, x) => f(x), pf, px)
...

The lift family of combinators are great for combining n parsers with an arity n function. For instance,

map is actually the same as a lift1. And above we can see that lift2 can implement a bunch of useful

combinators. In particular, let's see how we can use <::> to implement a way of reading Strings instead

of just Chars!

1.3 Putting the pieces together: Building string

Our new challenge is going to be making an implementation of the string combinator. Obviously, this

combinator already exists in the library, so we can play around with it first to see how it works:

import parsley.Parsley
import parsley.character.string

val abc = string("abc")

abc.parse("abc")
// res9: Result[String, String] = Success(x = "abc")
abc.parse("abcd")
// res10: Result[String, String] = Success(x = "abc")
abc.parse("ab")
// res11: Result[String, String] = Failure(
// ...

107

Basics of Combinators

abc.parse("a bc")
// res12: Result[String, String] = Failure(
// ...
abc.parse("dabc")
// res13: Result[String, String] = Failure(
// ...

Notice how the result of the parser is a string. The string combinator reads a specific string exactly. Here

are a couple more examples to help you get your head around everything we've seen so far:

import parsley.character.{char, string}

(string("abc") <~ char('d')).parse("abcd")
// res14: Result[String, String] = Success(x = "abc")
(string("abc") ~> char('d')).parse("abcd")
// res15: Result[String, Char] = Success(x = 'd')
(string("abc") <~> char('d')).parse("abcd")
// res16: Result[String, Tuple2[String, Char]] = Success(x = ("abc", 'd'))

Now let's start building the string combinator from scratch! Bear in mind, that unlike in Haskell, a Scala

string is not List[Char] but is the Java String. This makes it a little more annoying to implement, since

we'll have to convert a List[Char] into a String at the end, with map.

import parsley.Parsley

def string(str: String): Parsley[String] = {
 def traverseChar(cs: List[Char]): Parsley[List[Char]] = ???
 traverseChar(str.toList).map(_.mkString)
}

We've started here by defining the string function, and made the skeleton of an internal helper function

that will turn a list of characters into a parser that reads that list of characters and returns them all. The

main body of the function uses this, and afterwards maps the _.mkString method on lists to convert the

result back into a string. Now we need to focus on the helper. The first step is to consider how to handle

the empty string. For this we need another very handy combinator called pure, which reads no input and

returns what's given to it:

108

Basics of Combinators

import parsley.Parsley, Parsley.pure

// def pure[A](x: A): Parsley[A]
pure(7).parse("")
// res17: Result[String, Int] = Success(x = 7)

def traverseChar(cs: List[Char]): Parsley[List[Char]] = cs match {
 case Nil => pure(Nil)
 case _ :: _ => ???
}

Now the question is how to handle the recursive case? Well in the base case we transformed the empty list

into a parser that returns the empty list. We'll follow that same shape here and use <::>!

import parsley.Parsley, Parsley.pure
import parsley.character.char

def traverseChar(cs: List[Char]): Parsley[List[Char]] = cs match {
 case Nil => pure(Nil)
 case c :: cs => char(c) <::> traverseChar(cs)
}

What happens here is that we take each character in the string, convert it to a parser that reads that specific

character, and then add that onto the front of reading the rest of the characters. In full:

import parsley.Parsley
import parsley.character.char

def string(str: String): Parsley[String] = {
 def traverseChar(cs: List[Char]): Parsley[List[Char]] = cs match {
 case Nil => pure(Nil)
 case c :: cs => char(c) <::> traverseChar(cs)
 }
 traverseChar(str.toList).map(_.mkString)
}

// string "abc" == (char('a') <::> (char ('b') <::> (char 'c' <::>
 pure(Nil)))).map(_.mkString)

Hopefully, this gives some intuition about how we can start to sequence together larger and larger building

blocks out of smaller ones. It's also a lesson in how Scala can be used to help you build your parsers up!

Again, the string combinator is already provided to you (and optimised) so be sure to check around in

parsley.character and parsley.combinator for combinators that might already fit your needs. That's

about everything there is to say about sequencing and combining results, so next up is looking at choice.

109

Basics of Combinators

1.3.1 Takeaways

• Characters can be read using combinators found in parsley.character

• To sequence two things but only use the result of one, you'll want *>/~> or <*/<~

• The result of a parser can be changed using map

• N parser's results can be combined using the liftN combinators with an arity N function

• Larger combinators are built out of smaller ones using regular Scala functionality

2 Choice and Handling Failure

Most practical parsers aren't just a straight line like string or reading a bunch of characters, usually there

are choices to be made along the way.

2.1 Alternatives

When parsers fail to recognise some input, most of the time, there is an alternative branch that could have

been taken instead. Let's take a simple example again, say matching the regex (a|b). From now on, I'm

going to use some syntactic sugar from parsley.implicits so I don't have to write char or string.

import parsley.Parsley
import parsley.syntax.character.given

val aOrB = 'a' <|> 'b'

aOrB.parse("a")
// res18: Result[String, Char] = Success(x = 'a')
aOrB.parse("b")
// res19: Result[String, Char] = Success(x = 'b')
aOrB.parse("c")
// res20: Result[String, Char] = Failure(
// ...

Here, the <|> combinator (pronounced "alt" or "or") allows the parser to try an alternative branch when

the first fails (and so on for a longer chain of them). To be well typed, the <|> combinator requires both

branches to return the same type (or at least a super-type of both). There is also a shorter way of writing

this combinator, called | - this doesn't work properly on the character literals though, for obvious reasons.

For this specific usecase, character.oneOf('a', 'b') would probably have been more appropriate.

Let's carry on reinforcing the connections with what we've seen so far, and see how sequencing and

branching interact:

110

Basics of Combinators

import parsley.Parsley
import parsley.syntax.character.given

val p = 'a' ~> ("a" | "bc") <~ 'd'

p.parse("bcd") // fails, there isn't an 'a'
p.parse("ad") // fails, why?
p.parse("aae") // fails, why?
p.parse("abcde") // what happens here, what does it return (and the type)?
p.parse("aad") // what happens here, what is the type it returns?
p.parse(" aad") // what about this

Think about the what results you expect from each of these, and then try them out in a REPL to see if you're

right: also check out the error messages from the failing ones! Recall that string basically reads a bunch

of characters in sequence, one after the other. Let's see what happens when we put longer strings inside

the branches:

import parsley.Parsley
import parsley.syntax.character.given

val p = "abc" | "def" | "dead"

p.parse("abc")
// res27: Result[String, String] = Success(x = "abc")
p.parse("def")
// res28: Result[String, String] = Success(x = "def")
p.parse("dead")
// res29: Result[String, String] = Failure(
// ...

Ah, we have a problem! The first two alternatives parse fine, but the last one does not? The answer to this

is fairly simple, but I want to illustrate how we can make steps towards diagnosing this problem ourselves

using the combinators found in parsley.debug:

import parsley.Parsley
import parsley.syntax.character.given
import parsley.debug.*

val p = ("abc".debug("reading abc") |
 ("def".debug("reading def") | "dead".debug("reading
 dead")).debug("second branch")
).debug("first branch")

The debug combinator can be attached to any operation (by default Parsley associates <|> to the right,

which is why I've bracketed them this way round). It will provide printouts when it enters the debug and

when it exits, along with information about the state of the parser. Let's see the three printouts:

111

Basics of Combinators

p.parse("abc")
// >first branch> (1, 1): abc•
// ^
// >reading abc> (1, 1): abc•
// ^
// <reading abc< (1, 4): abc• Good
// ^
// <first branch< (1, 4): abc• Good
// ^
// res31: Result[String, String] = Success(abc)
p.parse("def")
// >first branch> (1, 1): def•
// ^
// >reading abc> (1, 1): def•
// ^
// <reading abc< (1, 1): def• Fail
// ^
// >second branch> (1, 1): def•
// ^
// >reading def> (1, 1): def•
// ^
// <reading def< (1, 4): def• Good
// ^
// <second branch< (1, 4): def• Good
// ^
// <first branch< (1, 4): def• Good
// ^
// res32: Result[String, String] = Success(def)
p.parse("dead")
// >first branch> (1, 1): dead•
// ^
// >reading abc> (1, 1): dead•
// ^
// <reading abc< (1, 1): dead• Fail
// ^
// >second branch> (1, 1): dead•
// ^
// >reading def> (1, 1): dead•
// ^
// <reading def< (1, 3): dead• Fail
// ^
// <second branch< (1, 3): dead• Fail
// ^
// <first branch< (1, 3): dead• Fail
// ^
// res33: Result[String, String] = Failure((line 1, column 1):
// unexpected "dea"
// expected "abc" or "def"
// >dead
// ^^^)

112

Basics of Combinators

Crucially, in the last printout, we can see the trace of the parser as it went wrong. It started by executing

the outermost branch, and tried to read "abc" and failed, but the caret is still pointing at the first character.

Then the second branch is taken as the alternative to the first: this time the parser tries to read "def"

and gets two characters of the way through it before failing at the 'a'. Notice though, that the second

branch immediately exited without attempting the third alternative! This is the key: when a parser fails but

has consumed input, the | combinator will not work. The reason for this is to improve the quality of error

messages, as well as keeping parsers efficient. The "best" solution to this problem is to change our parser

slightly to remove the common leading string of the last two alternatives like so:

import parsley.Parsley
import parsley.syntax.character.given

val p = "abc" | ("de" ~> ('f'.as("def") | "ad".as("dead")))

p.parse("abc")
// res34: Result[String, String] = Success(x = "abc")
p.parse("def")
// res35: Result[String, String] = Success(x = "def")
p.parse("dead")
// res36: Result[String, String] = Success(x = "dead")

In this version of the parser, the leading "de" has been factored out, leaving an alternative of "f" | "ad"

remaining. But the original parser returned the full string, and this wouldn't: it would return "abc", "f", or

"ad". The as combinator (which can be written as #>) will replace the result of parser on the left with the

value found on the right (e.g. "123".as(123) | "456".as(456) would be Parsley[Int]). You can think

of it as a map with the constant function or as p ~> pure(x). Using as we can replace the results of the last

two parsers with the results we expected from before. This is the most efficient way of dealing with our

problem, because this parser is still linear time in the worst case. But sometimes this transformation isn't

so straight-forward, especially in deeply nested grammars. In this case we can reach for another, easier to

read, tool.

2.2 Backtracking

In the last section, we saw that the | doesn't proceed with the second alternative if the first consumed input

before failing. That is to say it doesn't backtrack. There is, however, a combinator that allows | to backtrack

in these circumstances, called atomic. Let's see it in action:

import parsley.Parsley, Parsley.atomic
import parsley.syntax.character.given
import parsley.debug.*

val p = "abc" | atomic("def") | "dead"
// p: Parsley[String] = parsley.Parsley@4c02583e

113

Basics of Combinators

val q = "abc" | (atomic("def".debug("reading def")).debug("backtrack!") |
 "dead".debug("reading dead")).debug("branch")
// q: Parsley[String] = parsley.Parsley@134bf38d

p.parse("dead")
// res37: Result[String, String] = Success(dead)
q.parse("dead")
// >branch> (1, 1): dead•
// ^
// >backtrack!> (1, 1): dead•
// ^
// >reading def> (1, 1): dead•
// ^
// <reading def< (1, 3): dead• Fail
// ^
// <backtrack!< (1, 1): dead• Fail
// ^
// >reading dead> (1, 1): dead•
// ^
// <reading dead< (1, 5): dead• Good
// ^
// <branch< (1, 5): dead• Good
// ^
// res38: Result[String, String] = Success(dead)

Here we can see atomic in action, as well as a debug trace so you can see what's going on. When we wrap

the left hand side of a branch with atomic, when it fails we will rollback any input it consumed, which then

allows the branch to accept the alternative. We can see that in the debug trace. You only need to use atomic

where you know that two branches share a common leading edge. Knowing when to do this is just based

on practice. Adding an atomic never makes a parser wrong, but it can make the error messages worse, and

also excessive backtracking can increase the time complexity of the parser significantly. If you know that

if a branch consumes input and fails then its alternatives wouldn't succeed either, then you shouldn't be

using atomic. It is also useful to make a specific sub-parser behave as if it were indivisible: think reading

keywords, which are all or nothing.

2.3 Lookahead

Usually, a good ordering of your alternatives is most of what you need to write a functioning parser for just

about anything. However, every now and then it's convenient to look-ahead at what is to come (in either a

positive or a negative way): for instance checking if there is no remaining input with the eof combinator is

an example of negative look-ahead. There are two combinators for doing this, which we'll explore now:

import parsley.Parsley, Parsley.{notFollowedBy, lookAhead}
import parsley.character.item
import parsley.syntax.character.given
import parsley.debug.*

114

Basics of Combinators

// def lookAhead[A](p: Parsley[A]): Parsley[A]
// def notFollowedBy(p: Parsley[?]): Parsley[Unit]

val eof = notFollowedBy(item)
// eof: Parsley[Unit] = parsley.Parsley@49dd7a
val abcOnly = "abc" <~ eof
// abcOnly: Parsley[String] = parsley.Parsley@2a7e93a3

abcOnly.parse("abc")
// res39: Result[String, String] = Success(abc)
abcOnly.parse("abcd")
// res40: Result[String, String] = Failure((line 1, column 4):
// unexpected "d"
// >abcd
// ^)

val p = "abc".debug("abc") <~ lookAhead("!!".debug("!!")).debug("lookahead")
// p: Parsley[String] = parsley.Parsley@4f88680b

p.parse("abc!!")
// >abc> (1, 1): abc!!•
// ^
// <abc< (1, 4): abc!!• Good
// ^
// >lookahead> (1, 4): abc!!•
// ^
// >!!> (1, 4): abc!!•
// ^
// <!!< (1, 6): abc!!• Good
// ^
// <lookahead< (1, 4): abc!!• Good
// ^
// res41: Result[String, String] = Success(abc)

p.parse("abc!")
// >abc> (1, 1): abc!•
// ^
// <abc< (1, 4): abc!• Good
// ^
// >lookahead> (1, 4): abc!•
// ^
// >!!> (1, 4): abc!•
// ^
// <!!< (1, 5): abc!• Fail
// ^
// <lookahead< (1, 5): abc!• Fail
// ^
// res42: Result[String, String] = Failure((line 1, column 4):
// unexpected "!"
// expected "!!"
// >abc!
// ^)

115

Basics of Combinators

Some key things to note here: the result of backtracking is always (). This is because the parser has to

fail for notFollowedBy to succeed, so it can't return the result of the look-ahead! On the other hand,

lookAhead can return the result of the parser that was ran. You can see from the debug traces that when

it succeeds, lookAhead does not consume input, but if it fails having consumed input, that input remains

consumed. However, notFollowedBy never consumes input.

2.3.1 Takeaways

• Alternative branches of a grammar are encoded by | (also known as <|> or orElse)

• Within a branch, you are free to do whatever you want, but you must ensure both branches' types match

• When a branch fails having consumed input it won't take the second branch.

• The atomic combinator can be used to enable backtracking so that consumed input is undone when

passing back through (it doesn't affect any |s that execute inside it, however)

• When parsers go wrong, debug is a fantastic tool to investigate it with: use it early and often!

• Negative and positive look-ahead can be done with lookAhead and notFollowedBy

3 Interlude: Regex Parser Examples

Before we move on to slightly more realistic parsing problems that can't just be captured by regex, we'll

consolidate what we've seen so far by writing a few parsers for some regular expressions. For all of these

examples, I'll simplify it by using void, which ignores the result of a parser and replaces it with (): Unit.

This turns our parsers into recognisers. I'll also be introducing a couple of new ideas so we can complete the

functionality we need to properly capture regex (namely the equivalents of optional ?, zero-or-more * and

one-or-more +). Let's start there:

// This is the regex *
// it will perform `p` zero or more times (greedily) and collect all its
 results into a list
def many[A](p: Parsley[A]): Parsley[List[A]] = ???
def skipMany(p: Parsley[?]): Parsley[Unit] =
 many(p).void // ideally, it wouldn't build the list

// This is the regex +
// similar to many, except it requires at least 1 `p` to succeed
def some[A](p: Parsley[A]): Parsley[List[A]] = p <::> many(p)
def skipSome(p: Parsley[?]): Parsley[Unit] = p ~> skipMany(p)

// This is the regex ?
// it will either parse `p` or will return `x` otherwise
def optionally[A](p: Parsley[?], x: A): Parsley[A] = p.as(x) <|> pure(x)
def optional(p: Parsley[?]): Parsley[Unit] = optionally(p, ())

116

Basics of Combinators

def option[A](p: Parsley[A]): Parsley[Option[A]] =
 p.map(Some(_)) | pure(None)

// This is the regex [^ ..]
// it will parse any character _not_ passed to it
def noneOf[A](cs: Char*): Parsley[Char] = satisfy(!cs.contains(_))

With the exception of many, which we can't define just yet, all of these handy combinators are implemented

with everything we've seen so far. You can find them all, and many more, in parsley.combinator.

import parsley.Parsley, Parsley.{atomic, eof, many, some}
import parsley.combinator.optional
import parsley.syntax.character.given
import parsley.character.{noneOf, oneOf, item}

// regex .at
val r1: Parsley[Unit] = item ~> "at".void

// regex [hc]at
val r2: Parsley[Unit] = oneOf('h', 'c') ~> "at".void

// regex [^hc]at
val r3: Parsley[Unit] = noneOf('h', 'c') ~> "at".void

// regex [hc]at$
val r4: Parsley[Unit] = oneOf('h', 'c') ~> "at" ~> eof

// regex s.*
val r5: Parsley[Unit] = 's' ~> many(item).void

// regex [hc]?at
val r6: Parsley[Unit] = optional(oneOf('h', 'c')) ~> "at".void

// regex [hc]+at
val r7: Parsley[Unit] = some(oneOf('h', 'c')) ~> "at".void

// regex h(i|ello|ey)(world)?(\!|\.)?
val r8: Parsley[Unit] = 'h' ~> ("i" | atomic("ello") | "ey")
 ~> optional(" world")
 ~> optional('!' <|> '.').void

Have a play around with those in a REPL and make sure you understand how they work and what inputs

they will succeed on. The void combinator discards the result of a parser and makes it Unit.

4 Recursive Context-Free Parsers

Everything we've seen so far has been as powerful as a regular expression. While regular expressions

are certainly useful for writing lexers they are normally not powerful enough to parse the syntax of a

117

Basics of Combinators

programming language. It's worth nothing here that, usually, parser combinators don't make a distinction

between lexing and parsing: you build your lexers out of the combinators and then use them in the parser.

That has some advantages, but it does mean that backtracking is more expensive than it would otherwise

be in a parser with a dedicated lexing phase. The reason this is considered good style is because of the

higher-order nature of parser combinators: parsers are a first-class value that can be manipulated freely

by the combinators, as opposed to more rigid grammar rules and terminals.

In this section, we'll explore how to extend the knowledge we've already built to start writing more complex

parsers with recursive control-flow: this is sufficient to parse context-free grammars. It just takes the

addition of the flatMap combinator to recover context-sensitive grammars from this, but grammars that

require flatMap are rare in practice, so I won't touch on it here.

4.1 Recursion via Laziness

Writing recursive parsers is, fortunately, quite straight-forward but it does rely on Scala's lazy value feature.

Let's start with the classic matching brackets parser (which cannot be parsed with regex: here comes to

mind...):

import parsley.Parsley, Parsley.{eof, many}
import parsley.syntax.character.given

lazy val matching: Parsley[Unit] = many('(' *> matching <* ')').void
val onlyMatching = matching <* eof

onlyMatching.parse("") // succeeds
onlyMatching.parse("(") // fails
onlyMatching.parse("()") // succeeds
onlyMatching.parse("()()()") // succeeds
onlyMatching.parse("(((())))") // succeeds
onlyMatching.parse("(((()))()()(()))") // succeeds
onlyMatching.parse("(((()))(()()(()))") // fails

There's a bit to unpack here! Firstly, the type ascription here on matching isn't optional: when we write

recursive parsers, at least one thing in the recursive group needs to have a type, since Scala cannot infer the

types of recursive functions (or in this case values). The lazy keyword here makes the matching parser

only evaluated on demand. In this case that will be in the onlyMatching parser, which is only a val. The

reason this is important is that it means that the reference to matching inside the parser isn't forced

immediately, causing an infinite loop. That being said, every combinator in Parsley is defined using lazy

function arguments (including a lazy this for methods), so sometimes it isn't actually necessary to get the

right behaviour.

My advice is to use lazy val whenever you do write a parser that references itself, even indirectly. If your

parser infinite loops before running it, you'll know you've missed one: but there are other, more obscure

symptoms. Laziness is also important when you need to forward reference another parser. Here is an

example:

118

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

Basics of Combinators

lazy val q = ??? ~> p
lazy val p = ???

// vs

val p = ???
val q = ??? ~> p

Usually, the parsers can be re-ordered so that their definitions do not "cross over" each other in the words

of scalac. But when writing recursive parsers with multiple parts you may need to use lazy val to get

scalac to accept the ordering. This can also depend on whether or not they are defined locally in a function

or as attributes of a class. Indeed, the above example is fine if p and q are both attributes of a class, even

without lazy val!

Much more importantly, however, is noticing that when parsers are recursive, they absolutely must be

references (i.e. val). A recursive parser using def will, without question, infinite loop. This is because

Parsley will need the recursive point to be the same physical object as the original definition. When using

a def, each time recursion is encountered it will create a new object and generate a truly infinite parser,

instead of a cyclic one. We'll see an example of where we need to be careful about this later.

Before we move on with a more fleshed out example, I want to annotate the matching parser with debug to

give you a sense of how recursive parsing works out (I marked both parentheses and the matching parser

itself):

onlyMatchingDebug.parse("(()(()))")
// >matching> (1, 1): (()(()
// ^
// >left> (1, 1): (()(()
// ^
// <left< (1, 2): (()(()) Good
// ^
// >matching> (1, 2): (()(())
// ^
// >left> (1, 2): (()(())
// ^
// <left< (1, 3): (()(()))• Good
// ^
// >matching> (1, 3): (()(()))•
// ^
// >left> (1, 3): (()(()))•
// ^
// <left< (1, 3): (()(()))• Fail
// ^
// <matching< (1, 3): (()(()))• Good
// ^
// >right> (1, 3): (()(()))•
// ^

119

Basics of Combinators

// <right< (1, 4): (()(()))• Good
// ^
// >left> (1, 4): (()(()))•
// ^
// <left< (1, 5): (()(()))• Good
// ^
// >matching> (1, 5): (()(()))•
// ^
// >left> (1, 5): (()(()))•
// ^
// <left< (1, 6): (()(()))• Good
// ^
// >matching> (1, 6): (()(()))•
// ^
// >left> (1, 6): (()(()))•
// ^
// <left< (1, 6): (()(()))• Fail
// ^
// <matching< (1, 6): (()(()))• Good
// ^
// >right> (1, 6): (()(()))•
// ^
// <right< (1, 7): ()(()))• Good
// ^
// >left> (1, 7): ()(()))•
// ^
// <left< (1, 7): ()(()))• Fail
// ^
// <matching< (1, 7): ()(()))• Good
// ^
// >right> (1, 7): ()(()))•
// ^
// <right< (1, 8):)(()))• Good
// ^
// >left> (1, 8):)(()))•
// ^
// <left< (1, 8):)(()))• Fail
// ^
// <matching< (1, 8):)(()))• Good
// ^
// >right> (1, 8):)(()))•
// ^
// <right< (1, 9): (()))• Good
// ^
// >left> (1, 9): (()))•
// ^
// <left< (1, 9): (()))• Fail
// ^
// <matching< (1, 9): (()))• Good
// ^
// res52: Result[String, Unit] = Success(())

120

Basics of Combinators

Take a moment to just absorb that and be comfortable with how recursive parsing works out.

4.2 Example: Parsing Boolean Expressions

The matching bracket parser was a simple example of a recursive parser. For our second to last example

on this page (phew), we are going to parse (and evaluate!) boolean expressions with right associative

operators. I'm going to start by giving the EBNF for this grammar to give a sense of what we are working

with (and for you to be able to compare the approaches).

<expr> ::= <term> '||' <expr> | <term>
<term> ::= <not> '&&' <term> | <not>
<not> ::= '!' <not> | <atom>
<atom> ::= 'true' | 'false' | '(' <expr> ')'

We can see from this already it is a very recursive grammar, with almost every rule being recursive,

as well as a recursive call to <expr> in <atom>. Now, it's perfectly possible to translate this grammar

almost directly, but notice in <expr> and <term> that both alternatives in the grammar share a common

leading prefix: as we identified earlier, this would require us to enable backtracking with atomic and will

affect the time-complexity of the parse (here it would be exponential!). So, as a quick refactor, we will

extract the common edge and represent the grammar as follows (where square brackets indicate optional

component):

<expr> ::= <term> ['||' <expr>]
<term> ::= <not> ['&&' <term>]
<not> ::= '!' <not> | <atom>
<atom> ::= 'true' | 'false' | '(' <expr> ')'

Now, this grammar can be parsed in linear time, even when translated directly. This is much better!

However, I'll make the inefficient parser first, as it has the simpler translation (even if it's less efficient) and

will give a sense of how the solution works out.

import parsley.Parsley, Parsley.atomic
import parsley.syntax.character.given
import parsley.syntax.lift.liftSyntax2
import parsley.syntax.zipped.*

val or = (x: Boolean, y: Boolean) => x || y

// <expr> ::= <term> '||' <expr> | <term>
lazy val expr: Parsley[Boolean] =
 atomic(or.lift(term <* "||", expr)) | term

// <term> ::= <not> '&&' <term> | <not>
lazy val term: Parsley[Boolean] =
 atomic((not, "&&" ~> term).zipped(_ && _)) | not

// <not> ::= '!' <not> | <atom>

121

Basics of Combinators

lazy val not: Parsley[Boolean] = "!" *> not.map(!_) | atom

// <atom> ::= 'true' | 'false' | '(' <expr> ')'
lazy val atom = "true".as(true) | "false".as(false) | ("(" ~> expr <~ ")")

expr.parse("!false")
// res53: Result[String, Boolean] = Success(true)
expr.parse("true&&!(false||true)")
// res54: Result[String, Boolean] = Success(false)

Here I've introduced a tiny bit of sugar: by importing implicits.lift.Lift2, I've enabled the

lift method on two argument functions: essentially the same as lift2 itself: (or.lift _):

(Parsley[Boolean], Parsley[Boolean]) => Parsley[Boolean]. The lift is used to actually

perform our desired actions: when we read || we want to actually combine the results with ||! However,

you'll notice I had to define it as a function with an explicit type signature: this is because Scala is

reluctant to perform inference on the lambda when the argument types aren't known. To mitigate this,

implicits.zipped.Zipped2 provides the same functionality, but where .zipped is called on a tuple,

notice how this means that a raw unannotated lambda can be used: this is because Scala has already learnt

information about what types the arguments should have! Try to use the tupled zipped notation sparingly,

however: the backwards application makes it a little trickier to notice the ,s in the brackets. Try to only use

it when you only have small parsers as arguments and lift when it works fine.

The parser itself has a close resemblance to the original grammar, just with the extra processing of the

result. Notice, of course, that because expr, term and not are self-recursive, they all need explicit type

signatures, and have been marked as lazy. This also allows me to use atom before it's defined in the lazy

not. However, as I mentioned before, this is not ideal because of the heavy backtracking implied by the use

of atomic. The solution, as I've said, is to implement the second grammar. This is, as we'll see, a little tricker:

import parsley.Parsley
import parsley.syntax.character.given
import parsley.syntax.lift.liftSyntax2
import parsley.combinator.option

val and = (y: Boolean) => (x: Boolean) => x && y

// This is possible here, because false is the "zero" of ||
// but more generally we'd want the other definition
// val or = (x: Boolean, y: Option[Boolean]) => x || y.getOrElse(false)
val or = (x: Boolean, y: Option[Boolean]) => y.foldLeft(x)(_ || _)

// <expr> ::= <term> ['||' <expr>]
lazy val expr: Parsley[Boolean] = or.lift(term, option("||" ~> expr))

// <term> ::= <not> ('&&' <term> | epsilon)

122

Basics of Combinators

lazy val term: Parsley[Boolean] =
 not <**> ("&&" ~> term.map(and) </> identity[Boolean])

// <not> ::= '!' <not> | <atom>
lazy val not: Parsley[Boolean] = "!" ~> not.map(!_) | atom

// <atom> ::= 'true' | 'false' | '(' <expr> ')'
val atom = "true".as(true) | "false".as(false) | ("(" ~> expr <~ ")")

expr.parse("!false")
// res56: Result[String, Boolean] = Success(true)
expr.parse("true&&!(false||true)")
// res57: Result[String, Boolean] = Success(false)

The new example is the more efficient, linear time, form of the parser. Here I've employed two different

approaches of compiling the first term/not with the possible result after a possible operator. In the expr

case, I've used a form very similar to our original parser, except by using the option combinator, I can try

and parse what's inside and return None if it's not there. The or function will then have to handle both

the case where it was only a term and the case where it was a term with another expr. Here I've used

Option.foldLeft to do this, but there are many other ways of writing the function.

In the second case, with term, I've adopted an approach using the <**> combinator, which has the following

type:

(_ <**> _): (Parsley[A], Parsley[A => B]) => Parsley[B]

It is essentially <*> but with the function and the argument reversed. So inside the brackets, I have to read

a term, and if I'm successful I can apply the and function to it (notice the order of the arguments in the and

function has been deliberately reversed and it has been curried). If I'm not successful I should return the

identity function on Boolean, identity[Boolean]. The p </> x combinator is the same as saying p <|

> pure(x). This means our initial not result will either be applied to the identity function or the partially

applied and function.

The reason I've shown both styles is so that you can decide for yourself which you prefer: Option or curried.

This really isn't the best we could have done though! The page on building expression parsers will show

you how you can write this parser without having to fiddle with the and and or functions at all! (spoiler: it

involves a combinator that builds the expression parsers for you).

4.3 Higher-Order Example: Defining many

As a final exercise, I want to show how we can implement the many combinator: recall that it will execute

its argument zero or more times and collect all the results. It's a nice exercise in how the concepts we've

123

Basics of Combinators

already seen apply to an example where the parser we are constructing has a parameter of its own: in other

words, a higher-order parser. It will also highlight a gotcha when writing your own combinators, just in case

you become comfortable enough to do so.

The first step will be to think about what many(p) should do: if the parser p fails without consuming input,

then we shouldn't fail but instead stop and return the results we've collected so far. If no ps were parsed,

then the empty list should be returned. This gives us a hint about a use of </>, where we want to handle a

failure by returning a known value. If a p is parsed, we need to try reading yet more ps, so this is an indication

of recursion creeping in. So, with this in mind, let's see the definition:

import parsley.Parsley

// many p = p <:> many p <|> pure []
def many[A](p: =>Parsley[A]): Parsley[List[A]] = {
 lazy val go: Parsley[List[A]] = (p <::> go) </> Nil
 go
}

The definition isn't so complex, but comparing it with the Haskell equivalent in the comments does shed

light on what extra things we need to be careful of here. The first is noticing that the argument p has been

marked as =>Parsley[A]. This is because, like all of Parsley's combinators, we ideally want the argument

to be lazy: this is what =>A means (except unlike Haskell, the argument isn't memoised). Then we can see

the familar lazy val with explicit type signature that we expect from recursive parsers by now. What

might seem a bit strange, however, is why I created the go value in the first place. You may be tempted to

write something like this instead:

import parsley.Parsley

def many[A](p: =>Parsley[A]): Parsley[List[A]] = (p <::> many(p)) </> Nil

And the answer ties back to what I mentioned earlier: there is a difference in quite how recursive each of

the two are. In the first example, go physically refers back to itself, and so that is a morally finite parser.

The second example creates a new parser at each recursive step, so it is morally infinite. In Parsley, we

must be careful to only work with finite parsers, as they are actually represented by Abstract Syntax Trees.

So the solution here is to create a value that can reference the parameter p, without needing to pass it

around itself. You might wonder if it's possible to make parsers that, say, have a value they pass around.

The answer is yes, but it's quite uncommon to need to do that. For these circumstances, the functionality

in parsley.state is useful, but this is certainly out of scope for this page!

4.3.1 Takeaways

• Recursive parsers are where the real work happens

124

Basics of Combinators

• Using lazy val with any parser that is recursive is the safest way of writing them

• Recursive parsers need explicit types, as Scala can't infer them

• Parameterised recursion must be avoided: if the argument doesn't change then hoist it out!

• With expression grammars in particular, we should be mindful about the adverse effects of

backtracking

5 What Next?

The next logical step once you've digested this page, is to go and have a play around yourself! When you

feel ready, you should take a look at the Building Expression Parsers page to start seeing how recursive

parsers can go wrong, and what the typical strategies are of addressing this.

125

Building Expression Parsers

Building Expression Parsers


This page builds from the ground up on expression parsing. For a less discussion-based explanation

see precedence, as well as chain combinators and heterogeneous chain combinators for more

specific use-cases.

Expression parsing is a ubiquitous problem in parsing. It concerns the correct reading of operators and

values, which are usually organised into precedence and fixities. For the purposes of this page a fixity will

represent both the fixity and the associativity: infix-left, infix-right, prefix, and postfix. For example, this

is a grammar for reading simple expressions consisting of numbers, brackets, addition, subtraction and

multiplication with the standard precedences and left associativity.

<number> ::= <digit>+
<expr> ::= <expr> '+' <term> | <expr> '-' <term> | <term>
<term> ::= <term> '*' <atom> | <atom>
<atom> ::= '(' <expr> ')' | <number>

Here, the precedence is encoded by the fact that <expr> contains <term>, but <term> only contains

<atom>. The <expr> on the left of the '+' denotes that addition binds more tightly to the left, which is

what we expect.

1 The Problem with Left-Recursion

For a first atomic, let's directly translate this grammar into Parsley (for now, we'll parse into an Int: behold,

the magic of combinators!):

import parsley.Parsley, Parsley.atomic
import parsley.character.digit
import parsley.syntax.character.given
import parsley.syntax.zipped.*

// Standard number parser
val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

lazy val expr: Parsley[Int] = atomic((~expr <* '+', term).zipped(_ + _))
 | (~expr <* '-', term).zipped(_ - _)
 | term
lazy val term: Parsley[Int] = (~term <* '*', atom).zipped(_ * _) | atom
lazy val atom: Parsley[Int] = '(' *> expr <* ')' | number

126

Building Expression Parsers

This parser has a few glaring issues: for a start, the atomic is causing excessive backtracking! While there

are ways to improve this, the real problem here is the left-recursion (in fact, the ~ is used to stop the Scala

compiler from complaining about it!). Imagine you are evaluating this parser, first you look at expr, and

then your first task is to evaluate expr! In fact, due to the strictness of Parsley's combinators, this example

breaks before the parser runs: on Scala 2, it will StackOverflowError at runtime when constructing the

parser, and on Scala 3, it will report an infinitely recursive definition for expr and term. The solution is to

turn to the chain combinators, but before we do that, let's eliminate the atomics and refactor it a little to

make the transition less jarring:

import parsley.Parsley, Parsley.atomic
import parsley.character.digit
import parsley.syntax.character.given

// Standard number parser
val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

val add = (y: Int) => (x: Int) => x + y
val sub = (y: Int) => (x: Int) => x - y
val mul = (y: Int) => (x: Int) => x * y

lazy val expr: Parsley[Int] = atomic(~expr <**> ('+'.as(add) <*> term))
 | ~expr <**> ('-'.as(sub) <*> term)
 | term
lazy val term: Parsley[Int] = ~term <**> ('*'.as(mul) <*> atom) | atom
lazy val atom: Parsley[Int] = '(' ~> expr <~ ')' | number

The first step is to perform the translation from the previous post, where we make the operator result a

function and apply that (flipped) to the right hand side (with <*>) and then the left (with <**>). Now, in this

form, hopefully you can notice we've exposed the leading expr so that its on its own: now we can factor

a bit more:

lazy val expr: Parsley[Int] =
 expr <**> (('+'.as(add) <*> term) | ('-'.as(sub) <*> term))
 | term

Now we've eliminated the "backtracking" (if only we could make it that far!), but we can right factor the |

too to obtain the simplest form for the parser:

lazy val expr: Parsley[Int] =
 expr <**> (('+'.as(add) | '-'.as(sub)) <*> term)
 | term

127

Building Expression Parsers

Now, at this point, I could demonstrate how to left-factor this grammar and produce something that is right

recursive whilst preserving left-associativity. However, there isn't much point in doing this, as now we are

in a good position to use the chain.left1 combinator, which perfectly embodies the translation.

2 Using expr.chain

The left-recursion problem is not a new one, the parser combinator community has known about it for a

long time. For parser combinator libraries it is necessary to left-factor the grammar. Thankfully, the left-

factoring algorithm can be itself encoded nicely as a combinator: this is embodied by the chain-family.

Here is the same example as before, but fixed using chain.left1:

import parsley.Parsley
import parsley.character.digit
import parsley.syntax.character.given
import parsley.expr.chain

// Standard number parser
val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

val add = (x: Int, y: Int) => x + y
val sub = (x: Int, y: Int) => x - y

// chain.left1[A](p: Parsley[A])(op: Parsley[(A, A) => A]): Parsley[A]
lazy val expr: Parsley[Int] = chain.left1(term)('+'.as(add) | '-'.as(sub))
lazy val term = chain.left1(atom)('*' as (_ * _))
lazy val atom = '(' ~> expr <~ ')' | number

The structure of the parser is roughly the same, however now you'll notice that expr and term are no longer

self-recursive, and neither term nor atom need to be lazy (or have explicit types).

To make the relationship very clear between what we had before and what we have now, observe that the

transformation from recursive to chains follows these shape:

self <**> (op <*> next) | next == chain.left1(next)(op) // flipped op
self <**> op <*> next | next == chain.left1(next)(op) // normal op
next <**> (op <*> self </> identity) == chain.right1(next)(op) // no
 backtracking, flipped
atomic(next <**> op <*> self) | next == chain.right1(next)(op) //
 backtracking, normal op

In this parser, the nesting of the chains dictates the precedence order (again, terms are found inside

expressions and atoms inside terms). Since the addition and subtraction are on the same level, they belong

in the same chain. The left1 indicates that the operator/s are left-associative and that there should be

at least one of the next layer down. There are also chain.right1, chain.prefix, and chain.postfix

combinators. The building of these parsers, however, is fairly mechanical, and it is tiresome to keep finding

128

Building Expression Parsers

new names for new layers of the precedence table. For instances where there is more than one chain

interacting together then expr.precedence comes in handy (but note that expr.precedence is complete

overkill to replace a single chain!).

3 Using expr.precedence

The final form of this parser uses a expression parser builder, called precedence. Since Parsley parsers

are implemented in pure Scala, there is nothing to stop you from developing tools like this yourself: the

ability to work with parsers as values and develop combinators with them is the biggest advantage of the

approach. That being said, most combinator libraries provide this sort of functionality out of the box and

Parsley is no exception. Let's see the same parser one last time and see what's changed:

import parsley.Parsley
import parsley.character.digit
import parsley.syntax.character.given
import parsley.expr.{precedence, Ops, InfixL}

val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

lazy val expr: Parsley[Int] = precedence[Int]('(' ~> expr <~ ')', number)(
 Ops(InfixL)('*' as (_ * _)),
 Ops(InfixL)('+' as (_ + _), '-' as (_ - _)))

This is a lot smaller! The way precedence works is that it is first provided with the atoms of the expression,

and then each precedence level in turn (as many as needed), starting with the tightest binding operators.

These levels are provided in the Ops, which take a fixity, and then any number of parsers which return

functions matching the fixity given. Under the hood it will form the same nested chains that were used in

the previous section. In essence, there is no practical difference between the two implementations.

The precedence table can actually also be reversed so that it works the other way round:

lazy val expr: Parsley[Int] = precedence[Int](
 Ops[Int](InfixL)('+' as (_ + _), '-' as (_ - _)),
 Ops[Int](InfixL)('*' as (_ * _)))(
 '(' ~> expr <~ ')', number)

But due to the ordering that type inference happens, this form is a bit more cumbersome.

As mentioned before, the fixity given to Ops influences what type the operators need to have. This works

by a Scala feature called path-dependent typing, which is extraordinarily useful. If you want to know

more about this, see the relevant sub-section: you don't need to know about it or understand it to use

precedence, however.

There is still a little more to this story though. So far we've been working with a homogenous datatype:

every level in the precedence table shares the same type Int. Now, in an abstract syntax tree, which is

129

Building Expression Parsers

the far more common result of parsing, you could represent all expressions homogenously (which I call

a monolithic AST). But sometimes, it's desirable to maintain stronger guarantees about how the AST is

structured, and for that we need a heterogenous precedence table.

3.1 Generalising precedence with GOps, SOps, and Levels

3.1.1 Subtyped ASTs with SOps

In some circumstances, it might be desirable to change the type of the parsers at each layer of the

precedence table. This allows for a more strongly-typed AST, for example. Compared to Haskell, this can

be easily achieved in Scala using subtyping.

For example, we can make an AST for our expressions like so:

sealed trait Expr
case class Add(x: Expr, y: Term) extends Expr
case class Sub(x: Expr, y: Term) extends Expr

sealed trait Term extends Expr
case class Mul(x: Term, y: Atom) extends Term

sealed trait Atom extends Term
case class Number(x: Int) extends Atom
case class Parens(x: Expr) extends Atom

The magic of subtyping means that Number(10) is a valid value of type Expr. That being said, we have a

guarantee that an Expr can only be found inside a Mul if it is wrapped in Parens: since Expr is not a subtype

of Term or Atom, Mul(Add(Number(6), Number(7)), Number(8)) does not type-check!

Let's see what happens if we try and use our existing precedence knowledge with Ops:

val mul = (x: Expr, y: Expr) => Mul(x, y)
val add = (x: Expr, y: Expr) => Add(x, y)
val sub = (x: Expr, y: Expr) => Sub(x, y)

lazy val atom: Parsley[Atom] = number.map(Number) | '(' ~> expr.map(Parens)
 <~ ')'
lazy val expr = precedence[Expr](atom)(
 Ops(InfixL)('*' as mul),
 Ops(InfixL)('+' as add, '-' as sub))
// error:
// Found: (x : Expr)
// Required: Term
// val mul = (x: Expr, y: Expr) => Mul(x, y)
// ^
// error:
// Found: (y : Expr)

130

Building Expression Parsers

// Required: Atom
// val mul = (x: Expr, y: Expr) => Mul(x, y)
// ^
// error:
// Found: (y : Expr)
// Required: Term
// val add = (x: Expr, y: Expr) => Add(x, y)
// ^
// error:
// Found: (y : Expr)
// Required: Term
// val sub = (x: Expr, y: Expr) => Sub(x, y)
// ^
// error:
// The method `apply` is inserted. The auto insertion will be deprecated,
 please write `Number.apply` explicitly.
// lazy val atom: Parsley[Atom] = number.map(Number) | '(' ~> expr.map(Parens)
 <~ ')'
// ^^^^^^
// error:
// The method `apply` is inserted. The auto insertion will be deprecated,
 please write `Parens.apply` explicitly.
// lazy val atom: Parsley[Atom] = number.map(Number) | '(' ~> expr.map(Parens)
 <~ ')'
// ^^^^^^

The problem is that, though all Terms are Exprs (and ditto for Atom), we are forced to create operators of

the shape (Expr, Expr) => Expr to fit into the precedence table, but we can't guarantee that those Exprs

we are passing into the function are actually Terms (even though we know intuitively that they will be). In

other words, (Term, Atom) => Term is not a subtype of (Expr, Expr) => Expr!

So, how do we fix this? Well, we need to stop using Ops and use SOps: instead of requiring an (A, A) =>

A operator for InfixL, SOps will demand those with shape (B, A) => B such that A <: B. So, does our

(Term, Atom) => Term match this type? Yes: A = Atom, B = Term and Atom <: Term; all is good. Why

do we require that A <: B exactly? Well, consider that we didn't read any multiplication operators, then

we are going to be handing just an Atom to the layer above, but we are making the claim that we produce

Terms. Of course, this is ok because Atoms are themselves Terms.

Unfortunately, we can't just provide SOps as variadic arguments to the combinator, since they all have

different types to each other (that is the point, after all). Instead we use a heterogenous list of precedence

levels called, well, Levels.

131

Building Expression Parsers

trait Levels[+A]
case class Atoms[+A](atoms: Parsley[A]*) extends Levels[A]
// and
case class Level[A, B](
 nextLevels: Levels[A],
 ops: Ops[A, B])
 extends Levels[B]

Basically, the type parameter to Levels is saying that we produce values of type A from the outer-most level

in the structure. There are two choices of constructor in the list: Atoms is the end of the list, it produces

As. The equivalent to ::, Level[A, B] is a bit more complex: it says that, if you give it a precedence table

that produces As, then it can use its own operators that work on A to produce values of type B. As a result,

the larger table produces Bs.

Now, to make life nicer for us, the Levels list supports the common-place Scala collections operators of +:

and :+, which can be used in place of Level. Just like other Scala collections, the rest of the table appears

on the side of the :. As a result, we can build tables like:

Atoms(atom1, atom2, .., atomN) :+ ops1 :+ ops2 :+ .. :+ opsN
// or
opsN +: .. +: ops2 +: ops1 +: Atoms(atom1, atom2, .., atomN)

The first form is the tightest first approach, and the second is the weakest first approach. So, what does our

parser look like if we use Levels and SOps?

import parsley.Parsley
import parsley.character.digit
import parsley.syntax.character.given
import parsley.expr.{precedence, SOps, InfixL, Atoms}

val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

sealed trait Expr
case class Add(x: Expr, y: Term) extends Expr
case class Sub(x: Expr, y: Term) extends Expr

sealed trait Term extends Expr
case class Mul(x: Term, y: Atom) extends Term

sealed trait Atom extends Term
case class Number(x: Int) extends Atom
case class Parens(x: Expr) extends Atom

lazy val expr: Parsley[Expr] = precedence {
 Atoms(number.map(Number.apply), '(' ~> expr.map(Parens.apply) <~ ')') :+
 SOps(InfixL)('*' as Mul.apply) :+

132

Building Expression Parsers

 SOps(InfixL)('+' as Add.apply, '-' as Sub.apply)
}

Not so bad! We've constructed the Levels list using :+, so this is strongest-first. This time, if we turn the

list around it isn't going to make us need to add type-annotations like it did when we turned the Ops based

table round earlier. Nice! An extra advantage of using this approach now is that if we tried to use InfixR

instead of InfixL, this happens:

type mismatch;
 found : (Term, Atom) => Term
 required: (Atom, Term) => Term

This means that, by using SOps, we get a guarantee that our parser correctly matches the intended

associativity advertised by our ASTs constructors!

3.1.2 Non-Subtyped Heterogenous ASTs with GOps

So far we've seen how to generalise our expression parsers to work with heterogenous trees that rely on

subtyping. However, there may be cases where the subtyping is undesirable, or otherwise not possible (for

example, if you want layers from Int to Expr) but we still want these strongly typed guarantees about the

shape of the tree. In this case we would change the data-type as follows:

sealed trait Expr
case class Add(x: Expr, y: Term) extends Expr
case class Sub(x: Expr, y: Term) extends Expr
case class OfTerm(t: Term) extends Expr

sealed trait Term
case class Mul(x: Term, y: Atom) extends Term
case class OfAtom(x: Atom) extends Term

sealed trait Atom
case class Number(x: Int) extends Atom
case class Parens(x: Expr) extends Atom

Now the question is, how do we use the precedence parser now? The types of each of these constructors

no longer match (B, A) => B with A <: B! This is where GOps comes in. It's very similar to SOps,

except it doesn't come with the constraint that A is a subtype of B. Instead, a GOps constructor requires you

to provide a function of type A => B too! In our case, these will correspond to the OfAtom and OfTerm

functions from above. Note that, if there are any implicit conversion available from A to B, GOps will happily

use those (this includes the implicit conversions called A =:= A and A <:< B for type equality and subtyping

133

Building Expression Parsers

respectively: GOps can implement the behaviour of Ops and SOps via these conversions). So, what does this

look like in practice?

import parsley.Parsley
import parsley.character.digit
import parsley.syntax.character.given
import parsley.expr.{precedence, GOps, InfixL, Atoms}

val number = digit.foldLeft1[Int](0)((n, d) => n * 10 + d.asDigit)

lazy val expr: Parsley[Expr] = precedence {
 Atoms(number.map(Number.apply), '(' ~> expr.map(Parens.apply) <~ ')') :+
 GOps[Atom, Term](InfixL)('*' as Mul.apply)(OfAtom.apply) :+
 GOps[Term, Expr](InfixL)('+' as Add.apply, '-' as Sub.apply)(OfTerm.apply)
}

Not so different from the original using SOps, but if you can allow subtyping in your AST, you can use the

much less brittle SOps form. What makes it brittle? Well, notice that this time we've had to manually specify

the types that each level deals with: this is because, without a subtyping constraint, Scala is reluctant to

make Mul be of type (Term, Atom) => Term. Instead it makes it (Term, Atom) => Mul and complains

that OfAtom hasn't got type Atom => Mul. Oops!

By the way, you can actually intermingle Ops, SOps, and GOps all in the same table, just as long as you are

using Levels. Each of them are just builders for values of type Ops[A, B].

3.2 Path-Dependent Typing and Ops/SOps/GOps

To support the advertised behaviour that the type of an operator depends on the fixity it has, the Fixity

trait has an abstract type called Op. Let's take the machinery behind the simpler Ops as an example.

sealed trait Fixity {
 type Op[A, B]
}

object Ops {
 def apply[A](fixity: Fixity)(ops: Parsley[fixity.Op[A, A]]*): Ops[A, A]
 = ???
}

This is saying that the types of the parsers we pass to a call to Ops.apply should depend on the type of the

Op supported by the fixity. For instance, let's take InfixL and Prefix:

134

Building Expression Parsers

case object InfixL extends Fixity {
 override type Op[-A, B] = (B, A) => B
}
case object Prefix extends Fixity {
 override type Op[A, B] = B => B
}

Why Op works with As and Bs is explained in the very last subsection, so for now just always assume that A

=:= B. Now observe the types of the partial applications of Ops.apply to the different fixities:

def infixLefts[A](ops: Parsley[(A, A) => A]*): Ops[A, A] =
 Ops(InfixL)(ops*)
def prefixes[A](ops: Parsley[A => A]*): Ops[A, A] =
 Ops(Prefix)(ops*)

The path-dependent type of fixity.Op[A, A] allows the types of the parsers to change accordingly.

There is a similar story for the GOps and SOps objects, but they instead rely on Levels as opposed to

variadic arguments.

3.3 Afternote: Why (B, A) => B and B => B?

The types given to each fixity are as follows:

• InfixL is (B, A) => B

• InfixR is (A, B) => B

• Prefix and Postfix are both B => B

This might seem confusing at first: why, for instance, do the unary operators not mention A at all? Well, let's

first understand why (B, A) => B is appropriate for left-associative things but not right ones.

enum Expr {
 case LOp(x: Expr, y: Int)
 case ROp(x: Int, y: Expr)
 case Number(x: Int)
}

Notice that LOp(LOp(Number(6), 5), 4) is ok, because the right hand argument to LOp is always an Int

and the left-hand argument is always an expression. In the case of 6, Int is not an Expr, so we wrap it up

in the Number constructor. So, for LOp, if we take A = Int and B = Expr, it has the shape (B, A) => B.

On the other hand, ROp(ROp(Number(6), 5), 4) is not ok, because ROp(...) is not an Int! This justifies

135

Building Expression Parsers

the (A, B) => B type: like-expressions can appear on the right, but not the left. The level for this would

be GOp[Int, Expr](InfixL)('@'.as(LOp))(Number) or GOp[Int, Expr](InfixR)('@'.as(ROp))

(Number) (notice that switching them round wouldn't type-check!)

For Prefix and Postfix it's a similar story:

enum BoolExpr {
 case Not(x: BoolExpr)
 case Literal(b: Boolean)
}

We would like to be able to write Not(Not(Literal(False))), which means that Not needs to accept the

same type as itself. This explains B => B, and in this case, the booleans themselves need to be wrapped up

with Literal of shape A => B. This is the same role of Number before, which also has shape A => B. The

level for this would be GOp[Boolean, BoolExpr]("not" #> Not)(Literal).

136

Effective Whitespace Parsing

Effective Whitespace Parsing


Note that this page describes conventions for whitespace handling, but these are handled directly

by the parsley.token.Lexer and its subfunctionality, which is expored at the end of the next page.

Previously, in Basics of Combinators and Building Expression Parsers, we've seen parsers for languages

that do not account for whitespace. In this page I'll discuss the best practices for handling whitespace in

your grammars.

1 Defining whitespace readers

The first step in the correct handling of whitespace is to build the small parsers that recognise the

grammar itself. The two concerns usually are spaces and comments. For comments, the combinator

combinator.manyTill is very useful. For example:

import parsley.Parsley, Parsley.{atomic, many}
import parsley.character.{whitespace, string, item, endOfLine}
import parsley.combinator.manyTill
import parsley.errors.combinator.ErrorMethods //for hide

def symbol(str: String): Parsley[Unit] = atomic(string(str)).void

val lineComment = symbol("//") ~> manyTill(item, endOfLine).void
val multiComment = symbol("/*") ~> manyTill(item, symbol("*/")).void
val comment = lineComment | multiComment

val skipWhitespace = many(whitespace.void | comment).void.hide

Here, the manyTill combinator is used to read up until the end of the comment. You may notice the

hide method having been called on skipWhitespace. This handy operation hides the "expected" error

message from a given parser. In other words, when we have a parse error, it isn't particularly useful

to see in the suggestions of what would have worked that we could type some whitespace! Producing

informative and tidy error messages, however, is a more general topic for another post. Now that we have

the skipWhitespace parser we can start using it!

2 Lexemes

Lexemes are indivisible chunks of the input, the sort usually produced by a lexer in a classical setup. The

symbol combinator I defined above forms part of this: it uses atomic to make an indivisible string, either

you read the entire thing or none of it. You'll notice it voids out its output: this is because symbols are never

137

Effective Whitespace Parsing

"interesting", and we denote this by throwing away the result. The next piece of the puzzle is a combinator

called lexeme, which should perform a parser and then always read spaces after it:

def lexeme[A](p: Parsley[A]): Parsley[A] = p <~ skipWhitespace
def token[A](p: Parsley[A]): Parsley[A] = lexeme(atomic(p))

given Conversion[String, Parsley[Unit]] = s => lexeme(symbol(s))

The token combinator is a more general form of symbol, that works for all parsers, handling them

atomically and consuming whitespace after. Note that it's important to consume the whitespace outside

the scope of the atomic, otherwise malformed whitespace might cause backtracking for an otherwise legal

token!

With the Conversion[String, Parsley[Unit]], we can now treat all string literals as lexemes. This can

be very useful, but ideally this could be improved by also recognising whether or not the provided string is

a keyword, and if so, ensuring that it is not followed by another alphabetical character. This is out of scope

for this post, however.

Now let's take the example from Building Expression Parsers and see what needs to change to finish up

recognising whitespace.

import parsley.character.digit
import parsley.expr.{precedence, Ops, InfixL}

val number = token(digit.foldLeft1[BigInt](0)((n, d) => n * 10 + d.asDigit))
// number: Parsley[BigInt] = parsley.Parsley@48c7fed5

lazy val atom: Parsley[BigInt] = "(" ~> expr <~ ")" | number
lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*" as (_ * _)),
 Ops(InfixL)("+" as (_ + _), "-" as (_ - _)))

Other than introducing our new infrastructure, I've changed the characters in the original parser to strings:

this is going to make them use our new Conversion[String, Parsley[Unit]]! Notice how I've also

marked the whole of number as a token: we don't want to read whitespace between the digits, but instead

after the entire number has been read, and a number should be entirely atomic. Now that we've done this

we can try running it on some input and see what happens:

138

Effective Whitespace Parsing

expr.parse("5 + \n6 /*hello!*/ * 7")
// res0: Result[String, BigInt] = Success(47)

expr.parse(" 5 * (\n2 + 3)")
// res1: Result[String, BigInt] = Failure((line 1, column 1):
// unexpected space
// expected "(" or digit
// > 5 * (
// ^
// >2 + 3))

Ah, we've forgotten one last bit! The way we've set it up so far is that every lexeme reads whitespace after

the token. This is nice and consistent and reduces any unnecessary extra work reading whitespace before

and after a token (which inevitably means whitespace will be unnecessarily checked in between tokens

twice). But this means we have to be careful to read whitespace once at the very beginning of the parser.

Using skipWhitespace ~> expr as our parser we run is the final step we need to make it all work. If we

use expr in another parser, however, we don't want to read the whitespace at the beginning in that case. It

should only be at the very start of the parser (so when parse is called).

3 A Problem with Scope

The eagle-eyed reader might have spotted that there is a distinction between the string literals we are

using in the main parser and the symbols we are using in the definitions of whitespace. Indeed, because

we are using an implicit that consumes whitespace, it would be inappropriate to use it in the definition of

whitespace! If we were to pull in the stringLift conversion as we're used to, then Scala will report and

ambiguous implicit and we'll be stuck. It's a much better idea to limit the scope of these implicits, so we can

be clear about which we mean where. To illustrate what I mean, let's restructure the code a little for the

parser and ensure we don't run into any issues.

import parsley.Parsley, Parsley.{atomic, eof, many}
import parsley.character.{digit, whitespace, string, item, endOfLine}
import parsley.combinator.manyTill
import parsley.expr.{precedence, Ops, InfixL}
import parsley.errors.combinator.ErrorMethods //for hide

object lexer {
 private def symbol(str: String): Parsley[Unit] = atomic(string(str)).void

 private val lineComment = symbol("//") ~> manyTill(item, endOfLine).void
 private val multiComment = symbol("/*")
 ~> manyTill(item, symbol("*/")).void
 private val comment = lineComment | multiComment
 private val skipWhitespace = many(whitespace.void | comment).void.hide

 private def lexeme[A](p: Parsley[A]): Parsley[A] = p <~ skipWhitespace
 private def token[A](p: Parsley[A]): Parsley[A] = lexeme(atomic(p))
 def fully[A](p: Parsley[A]): Parsley[A] = skipWhitespace ~> p <~ eof

139

Effective Whitespace Parsing

 val number = token(digit.foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit))

 object implicits {
 given Conversion[String, Parsley[Unit]] = s =>
 lexeme(symbol(s)) // or `token(string(s))
 }
}

object expressions {
 import lexer.implicits.given
 import lexer.{number, fully}

 private lazy val atom: Parsley[BigInt] = "(" ~> expr <~ ")" | number
 private lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*" as (_ * _)),
 Ops(InfixL)("+" as (_ + _), "-" as (_ - _)))

 val parser = fully(expr)
}

In the above refactoring, I've introduced three distinct scopes: the lexer, the lexer.implicits and the

expressions. Within lexer, I've marked the internal parts as private. The implicits object nested

within lexer provides the ability for the expressions object to hook into our whitespace sensitive string

literal parsing (using import lexer.implicits.given), and, but enclosing it within the object, we prevent

it being accidentally used inside the rest of the lexer (without an explicit import, which we know would

be bad!). This is a good general structure to adopt, as it keeps the lexing code cleanly separated from the

parser. If, for instance, you wanted to test these internals, then you could leave them public, but I would

advise adding a private to its internal implicits at all times (however, ScalaTest does have the ability to test

private members!)

140

Effective Lexing

Effective Lexing


Parsley offers a user-friendly API for lexing, which is detailed at the end of this document. We

recommend using this API for most purposes.

The initial sections of this document explain the fundamental principles behind lexing with parser

combinators.

In the previous post, we saw the basic principles behind handling whitespace in a transparent manner. To

remind ourselves of what we ended up lets pick up where we left off:

import parsley.Parsley, Parsley.{atomic, eof, many}
import parsley.character.{digit, whitespace, string, item, endOfLine}
import parsley.combinator.manyTill
import parsley.expr.{precedence, Ops, InfixL}
import parsley.errors.combinator.ErrorMethods

object lexer {
 private def symbol(str: String): Parsley[Unit] = atomic(string(str)).void

 private val lineComment = symbol("//") ~> manyTill(item, endOfLine).void
 private val multiComment = symbol("/*")
 ~> manyTill(item, symbol("*/")).void
 private val comment = lineComment | multiComment
 private val skipWhitespace = many(whitespace.void | comment).void.hide

 private def lexeme[A](p: Parsley[A]): Parsley[A] = p <~ skipWhitespace
 private def token[A](p: Parsley[A]): Parsley[A] = lexeme(atomic(p))
 def fully[A](p: Parsley[A]): Parsley[A] = skipWhitespace ~> p <~ eof

 val number = token(digit.foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit))

 object implicits {
 given Conversion[String, Parsley[Unit]] = s => lexeme(symbol(s))
 }
}

object expressions {
 import lexer.implicits.given
 import lexer.{number, fully}

 private lazy val atom: Parsley[BigInt] = "(" ~> expr <~ ")" | number
 private lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*" as (_ * _)),
 Ops(InfixL)("+" as (_ + _), "-" as (_ - _)))

141

Effective Lexing

 val parser = fully(expr)
}

So far, we've broken the parser into two distinct chunks: the lexer and the main parser. Within the lexer we

need to be careful and explicit about where we handle whitespace and where we don't; within the parser

we can assume that all the whitespace has been correctly dealt with and can focus on the main content.

To help motivate the changes we are going to make to the lexer object later on in the post, I want to first

extend our "language" to add in variables into the language and a negate operator. In the process I'm going

to swap the integer result for an abstract syntax tree.

import parsley.expr.{precedence, Ops, InfixL, Prefix}
object expressions {
 import lexer.implicits.given
 import lexer.{number, fully, identifier}
 import Expr.*
 // for now, assume that `identifier` is just 1 or more alphabetical
 characters

 enum Expr {
 case Add(x: Expr, y: Expr)
 case Mul(x: Expr, y: Expr)
 case Sub(x: Expr, y: Expr)
 case Neg(x: Expr)
 case Num(x: BigInt)
 case Var(x: String)
 }

 private lazy val atom: Parsley[Expr] = "(" ~> expr <~ ")"
 | number.map(Num.apply)
 | identifier.map(Var.apply)
 private lazy val expr = precedence[Expr](atom)(
 Ops(Prefix)("negate" as Neg.apply),
 Ops(InfixL)("*" as Mul.apply),
 Ops(InfixL)("+" as Add.apply, "-" as Sub.apply))

 val parser = fully(expr)
}

Now, we can assume that, since identifier comes from the lexer, this parser handles all the whitespace

correctly. The question is, does it work?

expressions.parser.parse("x + y")
// res1: Result[String, Expr] = Success(Add(Var(x),Var(y)))

expressions.parser.parse("negate + z")
// res2: Result[String, Expr] = Failure((line 1, column 8):
// unexpected "+"
// expected "(", "negate", digit, or letter
// >negate + z

142

Effective Lexing

// ^)

expressions.parser.parse("negate x + z")
// res3: Result[String, Expr] = Success(Add(Neg(Var(x)),Var(z)))

expressions.parser.parse("negatex + z")
// res4: Result[String, Expr] = Success(Add(Neg(Var(x)),Var(z)))

So, looking at these examples, the first one seems to work fine. The second one also works fine, but given

that we've said that identifiers are just alpha-numeric characters, you might assume it was legal (indeed, it

really shouldn't be legal in most languages that don't have "soft" keywords). The third example again works

as intended, but the fourth is suspicious: negatex is clearly an identifier but was parsed as negate x! This

now gives us a set up for refining our lexer for the rest of the page. We won't be touching the expressions

object again, so take a long hard look at it.

1 Keywords, Identifiers and Operators

The crux of the problem we unearthed in the last section is that the implicit used to handle strings has no

awareness of keywords (or indeed operators) and identifiers that work for any alpha-numeric sequence

are an accident waiting to happen. Let's start by creating a couple of sets to represent the valid keywords

and operators in the language:

val keywords = Set("negate")
val operators = Set("*", "+", "-")

Now we can use these to define some more specialist combinators for dealing with these lexemes:

• We want to ensure that identifiers are not valid keywords.

• We want to ensure reading a keyword does not have a valid identifier "letter" after it.

• We want to ensure that a specific operator does not end up being the prefix of another, parsable,

operator. This satisfies the "maximal-munch" style of parsing.

We'll start with identifier: to check that an identifier we've just read is not itself a valid keyword we can

use the filter family of combinators. In particular, filterOut provides an error message that explains

why the parser has failed. Here is our new and improved identifier:

import parsley.errors.combinator.ErrorMethods //for filterOut
import parsley.character.{letter, stringOfSome}

// `stringOfSome(letter)` is loosely equivalent to
 `some(letter).map(_.mkString)`
val identifier = token(stringOfSome(letter).filterOut {
 case v if keywords(v) => s"keyword $v may not be used as an identifier"
})

143

Effective Lexing

The filterOut combinator takes a PartialFunction from the parser's result to String. If the partial

function is defined for its input, that produces the error message that the parser fails with. Notice that I've

been very careful to make sure the filter happens inside the scope of the token combinator. If we do read

an identifier and then rule it out because its a keyword, we want the ability to backtrack. Filtering after the

input has been irrevocably consumed will mean this parser fails more strongly than it should.

Next we'll tackle the keywords, using the handy notFollowedBy combinator that was briefly referenced

in the very first post:

import parsley.Parsley.notFollowedBy
def keyword(k: String): Parsley[Unit] = token(string(k)
 ~> notFollowedBy(letter))

Again, notice that I've been very careful to perform the negative-lookahead within the scope of the

token so that we can backtrack if necessary (indeed, it's likely that a valid alternative was an identifier!).

Additionally, we also need to ensure that whitespace isn't read before we try and check for the

letterOrDigit, otherwise negate x would also fail, so that's another reason to keep it within token.

Finally, let's look at how operator is dealt with. It's a bit trickier, and in this case is meaningless, because

all of our operators are single character and don't form valid prefixes of each other. But it will be useful to

discuss anyway:

import parsley.character.strings

def operator(op: String): Parsley[Unit] = {
 val biggerOps = operators.collect {
 case biggerOp if biggerOp.startsWith(op)
 && biggerOp > op => biggerOp.substring(op.length)
 }.toList
 biggerOps match {
 case Nil => lexeme(symbol(op)).void
 // strings requires one non-varargs argument
 case biggerOp :: biggerOps =>
 token(string(op) ~> notFollowedBy(strings(biggerOp, biggerOps*)))
 }
}

Let's unpack what's going on here: first we read the op as normal, then we ensure that it's not followed

by the rest of any operators for which it forms a valid prefix. This is using the regular collect method

on Scala Set. As an example, if we have the operator set Set("*", "*+", "*-", "++") and we call

operator("*"), we would be checking notFollowedBy(strings("+", "-")), since *+ and *- are both

prefixed by *. This is, again, a great example of how powerful access to regular Scala code in our parsers is!

This would be quite tricky to define in a parser generator!

144

Effective Lexing

So, the question is, what do we do with our new found combinators? We could just expose them to the rest

of the parser as they are, but that leaves room for error if we forget, or miss out, any of the replacements.

And, in addition, we lose the nice string literal syntax we've made good use of until this point. So, a better

solution would be to change our definition of the Conversion[String, Parsley[Unit]]:

object implicits {
 given Conversion[String, Parsley[Unit]] = { s =>
 if (keywords(s)) keyword(s)
 else if (operators(s)) operator(s)
 else lexeme(symbol(s)).void
 }
}

Now, when we use a string literal in our original parser, it will first check to see if that is a valid keyword or

an operator and, if so, it can use our specialised combinators: neat! With this done, let's see what the new

lexer looks like and relook at the problematic example:

object lexer {
 private val keywords = Set("negate")
 private val operators = Set("*", "+", "-")

 private def symbol(str: String): Parsley[String] = atomic(string(str))

 private val lineComment = symbol("//") ~> manyTill(item, endOfLine).void
 private val multiComment = symbol("/*")
 ~> manyTill(item, symbol("*/")).void
 private val comment = lineComment | multiComment
 private val skipWhitespace = many(whitespace.void | comment).void.hide

 private def lexeme[A](p: Parsley[A]): Parsley[A] = p <~ skipWhitespace
 private def token[A](p: Parsley[A]): Parsley[A] = lexeme(atomic(p))
 def fully[A](p: Parsley[A]): Parsley[A] = skipWhitespace ~> p <~ eof

 val number = token(digit.foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit))
 val identifier = token(stringOfSome(letter).filterOut {
 case v if keywords(v) => s"keyword $v may not be used as an identifier"
 })

 private def operator(op: String): Parsley[Unit] = {
 val biggerOps = operators.collect {
 case biggerOp if biggerOp.startsWith(op)
 && biggerOp > op => biggerOp.substring(op.length)
 }.toList
 biggerOps match {
 case Nil => lexeme(symbol(op)).void
 // strings requires one non-varargs argument
 case biggerOp :: biggerOps =>
 token(string(op)
 ~> notFollowedBy(strings(biggerOp, biggerOps*)))

145

Effective Lexing

 }
 }

 private def keyword(k: String): Parsley[Unit] =
 token(string(k) ~> notFollowedBy(letter))

 object implicits {
 given Conversion[String, Parsley[Unit]] = { s =>
 if (keywords(s)) keyword(s)
 else if (operators(s)) operator(s)
 else lexeme(symbol(s)).void
 }
 }
}

And the original failing example:

expressions.parser.parse("negatex + z")
// res8: Result[String, Expr] = Success(Add(Var(negatex),Var(z)))

Exactly as desired!

2 Using token.descriptions.LexicalDesc and token.Lexer

Whilst everything we have done above is nice and instructive, in practice all this work is already done for

us with token.Lexer. By providing a suitable token.descriptions.LexicalDesc, we can get a whole

bunch of combinators for dealing with tokens for free. There is a lot of functionality found inside the Lexer,

and most of it is highly configurable with the LexicalDesc and its sub-components. Let's make use of this

new found power and change up our lexer object one last time:

object lexer {
 import parsley.token.{Lexer, Basic}
 import parsley.token.descriptions.{LexicalDesc, NameDesc, SymbolDesc}

 private val desc = LexicalDesc.plain.copy(
 nameDesc = NameDesc.plain.copy(
 // Unicode is also possible instead of Basic
 identifierStart = Basic(_.isLetter),
 identifierLetter = Basic(_.isLetter),
),
 symbolDesc = SymbolDesc.plain.copy(
 hardKeywords = Set("negate"),
 hardOperators = Set("*", "+", "-"),
),
)

146

Effective Lexing

 private val lexer = new Lexer(desc)

 val identifier = lexer.lexeme.names.identifier
 val number = lexer.lexeme.natural.decimal

 def fully[A](p: Parsley[A]) = lexer.fully(p)
 val implicits = lexer.lexeme.symbol.implicits
}

The Conversion[String, Parsley[Unit]] we developed before, along with operator and keyword

are all implemented by lexer.lexeme.symbol. The names.identifier parser accounts for the keyword

problem for us. The basic natural.decimal parser meets our needs without any additional configuration:

it also returns BigInt, which is arbitrary precision. By using token.lexeme, this will already handle the

whitespace and atomicity of the token for us. This is just the tip of the iceberg when it comes to the lexer

functionality within Parsley. It is well worth having a play around with this functionality and getting used

to it!

A more detailed description of this functionality can be found in the API Guide.

147

The Parser Bridge Pattern

The Parser Bridge Pattern


The first part of this page helps to motivate the Parser Bridge pattern, and the second part shows

how to implement it from scratch. This is useful to know, but the API Guide Template Bridges or

Macro Bridges pages can get you started with the technique faster. The latter parts of this page can

be helpful when the template and macro bridges no longer suffice.

By this point, we've seen how to effectively build expression parsers, lexers, and how to handle whitespace

in a clean way. However, something we've not touched on yet is how to encode the position information

into any data-types produced by our parsers. In fact, the way we can build our results from our parsers can

be greatly improved. We'll focus on expanding the same parser from the previous pages, since in its current

form it has a variety of different types of constructors. What I will do, however it expand it with some basic

let-binding expressions. We'll use the same lexer object as before, but I will add the keywords let and

in to the keyword set. Previously, the grammar we were working with would have been:

<number> ::= ...
<identifier> ::= ...
<atom> ::= '(' <expr> ')' | <number> | <identifier>
<negated> ::= 'negate' <negated> | <atom>
<term> ::= <term> '*' <atom> | <atom>
<expr> ::= <expr> ('+' | '-') <term> | <term>

We'll extend this to include a let syntax as follows:

<let-binding> ::= 'let' <bindings> 'in' <expr> | <expr>
<bindings> ::= <binding> [';' [<bindings>]]
<binding> ::= <identifier> '=' <let-binding>

This will allow us to write programs like:

let x = 10;
 y = let z = x + 4 in z * z;
in x * y

Now let's see how this changes the parser:

import parsley.Parsley

object ast {
 sealed trait LetExpr
 case class Let(bindings: List[Binding], x: Expr) extends LetExpr
 case class Binding(v: String, x: LetExpr)

148

The Parser Bridge Pattern

 sealed trait Expr extends LetExpr
 case class Add(x: Expr, y: Expr) extends Expr
 case class Mul(x: Expr, y: Expr) extends Expr
 case class Sub(x: Expr, y: Expr) extends Expr
 case class Neg(x: Expr) extends Expr
 case class Num(x: BigInt) extends Expr
 case class Var(x: String) extends Expr
}

object expressions {
 import parsley.expr.{precedence, Ops, InfixL, Prefix}
 import parsley.combinator.sepEndBy1
 import parsley.syntax.lift.liftSyntax2

 import lexer.implicits.given
 import lexer.{number, fully, identifier}
 import ast.*

 lazy val atom: Parsley[Expr] = "(" ~> expr <~ ")"
 | number.map(Num.apply)
 | identifier.map(Var.apply)
 lazy val expr = precedence[Expr](atom)(
 Ops(Prefix)("negate" as Neg.apply),
 Ops(InfixL)("*" as Mul.apply),
 Ops(InfixL)("+" as Add.apply, "-" as Sub.apply))

 lazy val binding = Binding.apply.lift(identifier, "=" ~> letExpr)
 lazy val bindings = sepEndBy1(binding, ";")
 lazy val letExpr: Parsley[LetExpr] =
 Let.apply.lift("let" ~> bindings, "in" ~> expr) | expr

 val parser = fully(letExpr)
}

So far, so good. I've added a couple of now nodes to the AST, and three extra parser definitions. The only new

thing here is the helpful sepEndBy1 combinator, which is particularly good (along with its cousins, sepBy1

and endBy1) at dealing with things like commas and semi-colons. However, if I now said that we need to

encode position information into our language's AST then things are going to need to change.

Let's start by adding the information into the AST. There is a trick to this depending on whether or not we

want the information to be visible during pattern matches or not. Essentially, in Scala, if a second (or third

etc) set of arguments is added to a case class, these arguments will not appear in the pattern match, but

are required to build an instance. So we're going to add an extra argument to each constructor containing

the position information like so:

object ast {
 sealed trait LetExpr
 case class Let(bindings: List[Binding], x: Expr)(val pos:
 (Int, Int)) extends LetExpr

149

The Parser Bridge Pattern

 case class Binding(v: String, x: LetExpr)(val pos: (Int, Int))

 sealed trait Expr extends LetExpr
 // We will add the position information to these nodes later
 case class Add(x: Expr, y: Expr) extends Expr
 case class Mul(x: Expr, y: Expr) extends Expr
 case class Sub(x: Expr, y: Expr) extends Expr
 case class Neg(x: Expr) extends Expr
 // But we can do these ones now
 case class Num(x: BigInt)(val pos: (Int, Int)) extends Expr
 case class Var(x: String)(val pos: (Int, Int)) extends Expr
}

Urgh. This isn't ideal, but realistically it's the best Scala has got. The real wart here is how this affects our

parsers. Let's just take a look at a single parser and see what damage this will do:

val binding: Parsley[Binding] = Binding.lift(identifier, "=" ~> letExpr)

This no longer compiles for several reasons. The first is that Binding.lift doesn't work anymore, because

Binding does not have the shape (A, B) => C. Instead it has the shape (A, B) => C => D, and Scala will be

reluctant to make the translation. The second is that, even if we suppose that wasn't a problem, the type is

going to be Parsley[(Int, Int) => Binding] instead of the desired Parsley[Binding]. If that wasn't

already enough, there is the issue of having not dealt with the position anywhere either: what a mess!

We'll keep pretending that the Binding.lift notation works for a second, and consider how to get that

position information in and get it "working" again. The combinators for extracting position information are:

import parsley.position.*
/*
val line: Parsley[Int]
val col: Parsley[Int]
val pos: Parsley[(Int, Int)] = line.zip(col)
*/

So in this case, pos is what we are after, our first instinct might be to just add it as an extra parameter to

the lift: Binding.lift(identifier, "=" ~> letExpr, pos), but Binding is curried, and lift takes an

uncurried function. Instead, we can use <*> to apply a parser returning a function to its next argument:

val binding: Parsley[Binding] = Binding.lift(identifier, "=" ~> letExpr)
 <*> pos

Again, assuming that Binding.lift compiles with this snippet, this would compile fine. However, it's

faulty, because the position of the binding will point after the binding itself is finished! Instead we need to

swap it round so that the position is read before we start reading anything to do with the binding. This is a

150

The Parser Bridge Pattern

great reason why we always read trailing whitespace and not leading whitespace, as it keeps the position

as close to the token as possible. To do the position first and binding second, we can use <**>:

val binding: Parsley[Binding] = pos <**> Binding.lift(identifier, "="
 *> letExpr)

Now, to get it properly compiling again, we'll need to lean on the zipped notation instead, to help Scala's

type inference figure out what we want.

import parsley.syntax.zipped.*
val binding: Parsley[Binding] =
 pos <**> (identifier, "=" ~> letExpr).zipped(Binding(_, _) _)

This finally compiles and works as intended. The Binding(_, _) _ is desugared as follows:

Binding(_, _) _ = ((x, y) => Binding(x, y)(_))
 = ((x, y) => z => Binding(x, y)(z))

This isn't particularly intuitive, but it might help to recognise that the similar Binding(_, _)(_) is actually

equivalent to (x, y, z) => Binding(x, y)(z), which is not what we want. At this point though, we can

see what a pain this would be if we put this into the parser in all the places, especially in a bigger parser, it's

very noisy and the .zipped notation is (in my opinion) slightly harder to read than the .lift notation: it

is, however, required to get Scala to correctly annotate the types of our anonymous function for us, which

would otherwise make the size of the code even worse.

1 The Parser Bridge Pattern

The work we've done is unavoidable, but that doesn't mean we can't move it somewhere more sensible

and, at the same time, get a nice new syntax to abstract the way that AST nodes are constructed. I call this

technique the Parser Bridge pattern, and it takes many shapes depending on how the AST nodes are made.

The Bridge pattern is one of the classic "Gang of Four" structural design patterns. Its description is as

follows:

Decouple an abstraction from its implementation so that the two can vary independently.

This is roughly the intent of the Parser Bridge pattern, which is defined as:

Separate the construction of an AST node and metadata collection by using bridge constructors in the

parser.

In practice though, this can be used for more general decoupling of the AST from the parser, which we

will also see examples of (especially in the Haskell interlude!). We'll start exploring this pattern, and the

151

The Parser Bridge Pattern

associated terminology, with the let binding, Num and Var cases to get a feel for it, before figuring out how

to adapt it for the operators.

The general idea behind the pattern is to leverage Scala's syntactic sugar for apply methods. If you're

unaware, apply methods get sugared into "function call" syntax. It is, in fact, how case classes don't

require you to write a new keyword to build them: instead, the compiler has generated an apply method on

each class' companion object (more on this later!). Basically, we are going to follow suit, but tailor our apply

method to work on parsers instead of values! These apply methods are referred to as bridge constructors.

Let's get working within the ast object:

object ast {
 import parsley.position.pos
 import parsley.syntax.zipped.*

 sealed trait LetExpr
 case class Let(bindings: List[Binding], x: Expr)(val pos:
 (Int, Int)) extends LetExpr
 case class Binding(v: String, x: LetExpr)(val pos: (Int, Int))

 // New code here!
 object Let {

 def apply(bindings: Parsley[List[Binding]], x: Parsley[Expr]): Parsley[Let] =
 pos <**> (bindings, x).zipped(Let.apply)
 }
 object Binding {
 def apply(v: Parsley[String], x: Parsley[LetExpr]): Parsley[Binding] =
 pos <**> (v, x).zipped(Binding.apply)
 }

 sealed trait Expr extends LetExpr
 case class Add(x: Expr, y: Expr) extends Expr
 case class Mul(x: Expr, y: Expr) extends Expr
 case class Sub(x: Expr, y: Expr) extends Expr
 case class Neg(x: Expr) extends Expr
 case class Num(x: BigInt)(val pos: (Int, Int)) extends Expr
 case class Var(x: String)(val pos: (Int, Int)) extends Expr

 // New code here!
 object Num {
 def apply(x: Parsley[BigInt]): Parsley[Num] = pos <**> x.map(Num.apply)
 }
 object Var {
 def apply(x: Parsley[String]): Parsley[Var] = pos <**> x.map(Var.apply)
 }
}

152

The Parser Bridge Pattern

Notice how the structure of the new apply bridge constructors mirror the shape and type of

the companion class' constructor: where Binding requires a String, a LetExpr and a position,

Binding.apply requires a Parsley[String] and a Parsley[LetExpr]. Notice that the position is absent

from the builder: this is the entire point! If we need to remove the position (or add a position to an existing

node), we only need to make the change in the bridge constructor:

pos <**> (v, x).zipped(Binding.apply) ===> (v, x).zipped(Binding.apply)

This makes it really easy to change!

Now we can just use the bridge constructors in the main parser, and leave the work of building the data

to the apply itself. The advantage, as I alluded to above, is that whether or not a position is required for

a given node is not at all visible to the parser that uses its bridge: the bridge is the only place where this

needs to be handled. The main parser itself now looks like this:

object expressions {
 import parsley.expr.{precedence, Ops, InfixL, Prefix}
 import parsley.combinator.sepEndBy1

 import lexer.implicits.given
 import lexer.{number, fully, identifier}
 import ast.*

 private lazy val atom: Parsley[Expr] = "(" ~> expr <~ ")"
 | Num(number)
 | Var(identifier)
 private lazy val expr = precedence[Expr](atom)(
 Ops(Prefix)("negate" as Neg.apply),
 Ops(InfixL)("*" as Mul.apply),
 Ops(InfixL)("+" as Add.apply, "-" as Sub.apply))

 private lazy val binding = Binding(identifier, "=" ~> letExpr)
 private lazy val bindings = sepEndBy1(binding, ";")
 private lazy val letExpr: Parsley[LetExpr] =
 Let("let" ~> bindings, "in" ~> expr) | expr

 val parser = fully(letExpr)
}

As you can see, very little has changed. In fact, it's actually gotten slightly nicer. We no longer need to worry

about map or lift inside this parser, and can focus more on the structure itself. Just to make it very clear: if

we change our requirements for which nodes do and do not require positions, this parser will not change in

the slightest. There is still some work left to do however: first it would be nice if the boilerplate introduced

by each bridge could be reduced; and position information needs to be added to Add, Mul, Sub, and Neg.

153

The Parser Bridge Pattern

2 Reducing Boilerplate with Generic Bridge Traits

So far, we've constructed four bridge constructors:

object Let {
 def apply(bindings: Parsley[List[Binding]], x: Parsley[Expr]): Parsley[Let]
 =
 pos <**> (bindings, x).zipped(Let.apply)
}
object Binding {
 def apply(v: Parsley[String], x: Parsley[LetExpr]): Parsley[Binding] =
 pos <**> (v, x).zipped(Binding.apply)
}
object Num {
 def apply(x: Parsley[BigInt]): Parsley[Num] = pos <**> x.map(Num.apply)
}
object Var {
 def apply(x: Parsley[String]): Parsley[Var] = pos <**> x.map(Var.apply)
}

As the number of AST nodes increase, it becomes more tedious to continue to define bridge constructors

and functions by hand. This can be improved by so-called generic bridge traits. This idea leverages the

common structure between each of the bridge constructors and tries to build a recipe for eliminating the

boilerplate. This leverages another classic OOP design pattern, called the Template Method pattern:

Define the skeleton of an algorithm in an operation, deferring some steps to subclasses. Template

Method lets subclassses redefine certain steps of an algorithm (called hooks) without changing the

algorithm's structure.

Notice that we can simplify the scoping of the apply calls:

object Let {
 def apply(bindings: Parsley[List[Binding]], x: Parsley[Expr]): Parsley[Let]
 =
 pos <**> (bindings, x).zipped(this.apply)
}
object Binding {
 def apply(v: Parsley[String], x: Parsley[LetExpr]): Parsley[Binding] =
 pos <**> (v, x).zipped(this.apply)
}
object Num {
 def apply(x: Parsley[BigInt]): Parsley[Num] = pos <**> x.map(this.apply)
}
object Var {
 def apply(x: Parsley[String]): Parsley[Var] = pos <**> x.map(this.apply)
}

154

The Parser Bridge Pattern

Now, the shared structure of each of these bridge constructors should hopefully be much clearer. That

doesn't mean they are all identical, indeed, the types vary, as do the arities of the constructors themselves.

But there is enough structure here to extract some shiny new bridge template traits:

trait PosParserBridge1[-A, +B] {
 // this is called the "hook": it's the hole in the template that must be
 implemented
 def apply(x: A)(pos: (Int, Int)): B
 // this is the template method, in this case the template for the bridge
 constructor
 def apply(x: Parsley[A]): Parsley[B] = pos <**> x.map(this.apply)
}

trait PosParserBridge2[-A, -B, +C] {
 def apply(x: A, y: B)(pos: (Int, Int)): C
 def apply(x: Parsley[A], y: Parsley[B]): Parsley[C] =
 pos <**> (x, y).zipped(this.apply)
}

These are the two template bridge traits that provide the implementations of our bridge constructors.

Obviously, there are many many more possible such traits. At the very least, it is also useful to have

"pure" versions that do not interact with positions at all also (these are provided by parsley within

parsley.templates):

trait PureParserBridge1[-A, +B] {
 def apply(x: A): B
 def apply(x: Parsley[A]): Parsley[B] = x.map(this.apply)
}

trait PureParserBridge2[-A, -B, +C] {
 def apply(x: A, y: B): C
 def apply(x: Parsley[A], y: Parsley[B]): Parsley[C] =
 (x, y).zipped(this.apply)
}

So, how are these used to help remove the boilerplate? Well, the companion objects for each of the AST

nodes will simply extend one of the generic bridge traits as appropriate:

object Let extends PosParserBridge2[List[Binding], Expr, LetExpr]
object Binding extends PosParserBridge2[String, LetExpr, Binding]
object Num extends PosParserBridge1[BigInt, Num]
object Var extends PosParserBridge1[String, Var]

Ahhhhh, much better! If position information was removed from say Num, then it would just have to extend

PureParserBridge1 instead, and no more changes need to be made!

155

The Parser Bridge Pattern

3 Singleton Bridge for Precedence Ops

With the basics of bridge constructors (as well as generic bridge traits) under our belt, let's explore

how we might add position information to the arithmetic operators, which are used within the

precedence combinator. The problem with these is that the arguments to the bridge constructors are not

"immediately" available when we use them: it's the precedence combinator that provides the arguments

internally. This means we can't use the same shape of bridge here. That said, there are a couple of different

ways we can implement a bridge constructor for the operators:

1) Treat them just the same as Num, Var, Let, and Binding and create a bridge constructor that looks like

Neg("negate"), Mul("*"), etc. This is the easiest, and they'll differ because of the type they return (they

need to be parsers that return functions). 2) Build a special combinator from (or <#) that can transform the

bridges for these operators into just looking like they do now. It would look like: Neg from "negate", Mul

from "*", etc. This is slightly more effort to do, however I think it is more faithful to how these operators

usually behave. The Parser Bridge pattern treats arguments to the builder as arguments to the data-type,

but the argument to Neg isn't the () returned by "negate": Parsley[Unit], so personally I think it's a

bit jarring to use (1).

So that you can make the choice about which style you prefer, we'll go ahead and implement both, with Mul

using style (1) and the rest using style (2).

case class Mul(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr

object Mul {
 def apply(op: Parsley[Unit]): Parsley[(Expr, Expr) => Mul] =
 pos.map[(Expr, Expr) => Mul](p => Mul(_, _)(p)) <~ op
}

// or, alternatively, we can explicitly provide a new hook for our generic
 bridge trait:
object Mul extends PosParserBridge1[Unit, (Expr, Expr) => Mul] {
 def apply(x: Unit)(pos: (Int, Int)): (Expr, Expr) => Mul = Mul(_, _)(pos)
}

Firstly, we can see this is a bit more effort than the previous bridge constructors. This is because there

is nothing for scala's inference to "latch" onto, since we are returning a function and not providing the

arguments here. While this is annoying, there isn't much we can do about it for this style. Interestingly,

here we can also see an example of where the apply hook method can be overriden explicitly to adapt our

existing bridge behaviour to a type that is not consistent with the AST nodes type itself: this can be useful!

Let's see how style (2) compares. To accomplish this, we can think of the new from combinator as being

another template method provided by our generic bridge traits:

import parsley.ap.*

156

The Parser Bridge Pattern

trait PosParserBridge1[-A, +B] {
 def apply(x: A)(pos: (Int, Int)): B
 private def con(pos: (Int, Int)): A => B = this.apply(_)(pos)

 def apply(x: Parsley[A]): Parsley[B] = ap1(pos.map(con), x)
 def from(op: Parsley[?]): Parsley[A => B] = pos.map(con) <~ op
 final def <#(op: Parsley[?]): Parsley[A => B] = this from op

}

trait PosParserBridge2[-A, -B, +C] {
 def apply(x: A, y: B)(pos: (Int, Int)): C
 private def con(pos: (Int, Int)): (A, B) => C = this.apply(_, _)(pos)

 def apply(x: Parsley[A], y: =>Parsley[B]): Parsley[C]
 = ap2(pos.map(con), x, y)
 def from(op: Parsley[?]): Parsley[(A, B) => C] = pos.map(con) <* op
 final def <#(op: Parsley[?]): Parsley[(A, B) => C] = this from op
}

In amongst this, I've factored out the application of our hook apply into the private function con, which

helps keep the code a bit cleaner. In the unsaturated case, the from combinator just maps con over the

position, leaving a residual function, and the saturated template apply case has been cleaned up to use the

ap-family of combinators, which allow for the application of a parser returning a function to many parsers;

this is similar to lift/zipped, but works for parsers instead of functions, which is helpful here. As a side-

effect of using ap, the laziness of the template apply combinator has been improved, which is nice.

Now, by mixing in one of the generic bridge traits, we get two ways of using bridge constructors: the first,

apply, allows for fully-saturated application of a constructor to its parser arguments; and the second, from,

allows for fully-unsaturated application of a constructor to its arguments, whilst still handling the position

tracking. You can imagine that partially-saturated bridge constructors can also be templated in a similar

way, perhaps to fit some unconventional use-cases. In this case, here are the definitions of the companion

objects for Add, Sub and Neg now:

case class Add(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr
case class Sub(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr
case class Neg(x: Expr)(val pos: (Int, Int)) extends Expr

object Add extends PosParserBridge2[Expr, Expr, Add]
object Sub extends PosParserBridge2[Expr, Expr, Sub]
object Neg extends PosParserBridge1[Expr, Neg]

To make it clear, this automatically gives us the option to use Add(p, q) or Add from "+", and its the latter

that we'll want to use inside the precedence combinator:

157

The Parser Bridge Pattern

object expressions {
 import parsley.expr.{precedence, Ops, InfixL, Prefix}
 import parsley.combinator.sepEndBy1

 import lexer.implicits.given
 import lexer.{number, fully, identifier}
 import ast.*

 private lazy val atom: Parsley[Expr] =
 "(" ~> expr <~ ")" | Num(number) | Var(identifier)
 private lazy val expr = precedence[Expr](atom)(
 Ops(Prefix)(Neg from "negate"),
 Ops(InfixL)(Mul("*")),
 Ops(InfixL)(Add from "+", Sub from "-"))

 private lazy val binding = Binding(identifier, "=" ~> letExpr)
 private lazy val bindings = sepEndBy1(binding, ";")
 private lazy val letExpr: Parsley[LetExpr] =
 Let("let" ~> bindings, "in" ~> expr) | expr

 val parser = fully(letExpr)
}

3.1 Abstracting Again

In the refined definition of our generic bridge traits we supported the Singleton Bridge parsing design

pattern by allowing the companion object itself to "appear" like a parser itself. However, if we peer in closely

we can even spot some common structure between the two different from implementations from above:

trait PosParserBridge1[-A, +B] {
 def apply(x: A)(pos: (Int, Int)): B
 private def con(pos: (Int, Int)): A => B = this.apply(_)(pos)

 def from(op: Parsley[?]): Parsley[A => B] = pos.map(con) <* op
 final def <#(op: Parsley[?]): Parsley[A => B] = this from op
}

trait PosParserBridge2[-A, -B, +C] {
 def apply(x: A, y: B)(pos: (Int, Int)): C
 private def con(pos: (Int, Int)): (A, B) => C = this.apply(_, _)(pos)

 def from(op: Parsley[?]): Parsley[(A, B) => C] = pos.map(con) <* op
 final def <#(op: Parsley[?]): Parsley[(A, B) => C] = this from op
}

Both bridges are almost identical except for the shape returned by their con function. It's possible to

abstract one more layer and introduce another couple of traits to help factor the common code:

trait PosParserSingletonBridge[+A] {

158

The Parser Bridge Pattern

 protected def con(pos: (Int, Int)): A
 def from(op: Parsley[?]): Parsley[A] = pos.map(this.con) <* op
 final def <#(op: Parsley[?]): Parsley[A] = this from op
}

trait PosParserBridge1[-A, +B] extends PosParserSingletonBridge[A => B] {
 def apply(x: A)(pos: (Int, Int)): B
 def apply(x: Parsley[A]): Parsley[B] = ap1(pos.map(con), x)

 override final def con(pos: (Int, Int)): A => B = this.apply(_)(pos)
}

trait PosParserBridge2[-A, -B, +C] extends PosParserSingletonBridge[(A, B)
 => C] {
 def apply(x: A, y: B)(pos: (Int, Int)): C
 def apply(x: Parsley[A], y: =>Parsley[B]): Parsley[C]
 = ap2(pos.map(con), x, y)

 override final def con(pos: (Int, Int)): (A, B) => C = this.apply(_, _)
(pos)
}

This provides a modest improvement over the original versions.

3.2 Adding Errors

The template bridges found in parsley.templates offer one additional component that is absent

from the descriptions above: they all extend bridges.ParserSingletonBridge, which in turn extends

bridges.ErrorBridge. This trait exposes hook methods for labels and reason, which allow for error

messages to be associated with the bridge, and in exchange provides the template error combinator: this

is supposed to be called within the bridge to annotate a parser with the provided error messages. Our

definitions of PosParserBridge1 and PosParserBridge2 can also benefit from this:

import parsley.bridges.*

trait PosParserSingletonBridge[+A] extends ParserSingletonBridge[A] {
 protected def con(pos: (Int, Int)): A
 protected final def singleton = pos.map(con)
}

trait PosParserBridge1[-A,
 +B] extends ParserBridge1[A, B] with PosParserSingletonBridge[A => B] {
 def apply(x: A)(pos: (Int, Int)): B
 def apply(x: Parsley[A]): Parsley[B] = error(ap1(pos.map(con), x))

 override final def con(pos: (Int, Int)): A => B = this.apply(_)(pos)
}

159

The Parser Bridge Pattern

trait PosParserBridge2[-A, -B,
 +C] extends ParserBridge2[A, B, C] with PosParserSingletonBridge[(A, B) => C]
 {
 def apply(x: A, y: B)(pos: (Int, Int)): C
 def apply(x: Parsley[A], y: =>Parsley[B]): Parsley[C]
 = error(ap2(pos.map(con), x, y))

 override final def con(pos: (Int, Int)): (A, B) => C = this.apply(_, _)
(pos)
}

4 The Final Parser

This is our final parser which compiles fine, and tracks positions correctly. As we can see, all of the work

we needed to handle the position tracking, AST node construction, whitespace handling and lexing has all

been abstracted elsewhere, leaving a clean core. For completeness, here's the entire file:

object lexer {
 import parsley.token.{Lexer, Basic}
 import parsley.token.descriptions.{LexicalDesc, NameDesc, SymbolDesc}

 private val desc = LexicalDesc.plain.copy(
 nameDesc = NameDesc.plain.copy(
 identifierStart = Basic(_.isLetter),
 identifierLetter = Basic(_.isLetter),
),
 symbolDesc = SymbolDesc.plain.copy(
 hardKeywords = Set("negate", "let", "in"),
 hardOperators = Set("*", "+", "-"),
),
)

 private val lexer = new Lexer(desc)

 val identifier = lexer.lexeme.names.identifier
 val number = lexer.lexeme.natural.decimal

 def fully[A](p: Parsley[A]) = lexer.fully(p)
 val implicits = lexer.lexeme.symbol.implicits
}

object ast {
 sealed trait LetExpr
 case class Let(bindings: List[Binding], x: Expr)(val pos:
 (Int, Int)) extends LetExpr
 case class Binding(v: String, x: LetExpr)(val pos: (Int, Int))

 sealed trait Expr extends LetExpr
 case class Add(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr
 case class Mul(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr
 case class Sub(x: Expr, y: Expr)(val pos: (Int, Int)) extends Expr

160

The Parser Bridge Pattern

 case class Neg(x: Expr)(val pos: (Int, Int)) extends Expr
 case class Num(x: BigInt)(val pos: (Int, Int)) extends Expr
 case class Var(x: String)(val pos: (Int, Int)) extends Expr

 object Let extends PosParserBridge2[List[Binding], Expr, LetExpr]
 object Binding extends PosParserBridge2[String, LetExpr, Binding]
 object Add extends PosParserBridge2[Expr, Expr, Add]
 object Mul extends PosParserBridge2[Expr, Expr, Mul]
 object Sub extends PosParserBridge2[Expr, Expr, Sub]
 object Neg extends PosParserBridge1[Expr, Neg]
 object Num extends PosParserBridge1[BigInt, Num]
 object Var extends PosParserBridge1[String, Var]
}

object expressions {
 import parsley.expr.{precedence, Ops, InfixL, Prefix}
 import parsley.combinator.sepEndBy1

 import lexer.implicits.given
 import lexer.{number, fully, identifier}
 import ast.*

 private lazy val atom: Parsley[Expr] =
 "(" ~> expr <~ ")" | Num(number) | Var(identifier)
 private lazy val expr = precedence[Expr](atom)(
 Ops(Prefix)(Neg from "negate"),
 Ops(InfixL)(Mul from "*"),
 Ops(InfixL)(Add from "+", Sub from "-"))

 private lazy val binding = Binding(identifier, "=" ~> letExpr)
 private lazy val bindings = sepEndBy1(binding, ";")
 private lazy val letExpr: Parsley[LetExpr] =
 Let("let" ~> bindings, "in" ~> expr) | expr

 val parser = fully(letExpr)
}

As a last thought, it's worth reinforcing that the parser bridge pattern is just a guideline: it's free to take

any shape you need it to, so experiment with what works well for your own structures. The value in it really

in how easy you can separate the concerns of building a structure from the parser for the grammar. Of

course, there is nothing to say you have to use it either. If you are fine with writing the bridge constructors

inline in the parser, then do it! It might be that you find the extra lines of code in the file that defines your

AST to be too grating. Really this is just another exercise in how leveraging Scala's functionality when we

make our parsers can help us abstract and manage our code, once again showcasing the limitless flexibility

combinators provide.

161

Interlude 1: Building a Parser for Haskell

Interlude 1: Building a Parser for Haskell

We've covered a lot of ground in the series so far! I think it's time to take a medium-length break and

implement a parser for a (somewhat) simplified Haskell from scratch. Haskell is a deceptively simple

looking language, but is actually a minefield of ambiguous parses and the whitespace sensitivity in

the language makes it even trickier. For now, I'm going to make a couple of simplifications: firstly, I'm

disallowing multi-line anything. We are going to make a \n a significant character and not include it in

the whitespace parsing (at least until part 3!). Furthermore, I'm banning where clauses, more than one

definition in a let, guards on a new line, and case statements must use {} (these are optional in Haskell,

so long as the code is well-indented). I'm also not going to deal with user defined operators, because the

introduction of these during the parser does create a context-sensitive grammar, which I'd prefer to avoid

for now. With that being said, here's the grammar. I wouldn't recommend spending too much time looking

at the grammar, and instead we'll get started with the fairly easy task of lexing.

<program> ::= ((<data> | <declaration> | <clause>) NEWLINE)*

<data> ::= 'data' <con-id> <var-id>* '=' <constructors>
<constructors> ::= <constructor> ['|' <constructors>]
<constructor> ::= <con-id> <type-atom>*

<declaration> ::= <var-id> '::' <type>

<clause> ::= <var-id> <pat-naked>* [<guard>] '=' <expr>
<pat-naked> ::= <var-id> | <pat-con> | '()' | '[]' | <literal> | '_'
 | '(' <pat> ')'
 | '(' <pat> [',' <pat>]+ ')'
 | '[' <pat> [',' <pat>]* ']'
<pat> ::= <pat-paren> [':' <pat>]
<pat-paren> ::= <pat-app> | <pat-naked>
<pat-app> ::= <pat-con> <pat>+
<pat-con> ::= '(' ','+ ')' | <con-id> | '(' ':' ')'

<guard> ::= '|' <expr>

<type> ::= <type-app> ['->' <type>]
<type-app> ::= <type-atom>+
<type-atom> ::= <type-con> | <var-id> | '()' | '[' <type> ']'
 | '(' <type> (',' <type> ')')+ | '(' <type> ')'
<type-con> ::= <con-id> | '[]' | '(' '->' ')' | '(' ','+ ')'

<expr> ::= [<expr> '$'] <expr-1>
<expr-1> ::= <expr-2> ['||' <expr-1>]
<expr-2> ::= <expr-3> ['&&' <expr-2>]
<expr-3> ::= <expr-4> [('<' | '<=' | '>' | '>=' | '==' | '/=') <expr-4>]
<expr-4> ::= <expr-5> [(':' | '++') <expr-4>]
<expr-5> ::= [<expr-5> ('+' | '-')] <expr-6>
<expr-6> ::= '-' <expr-6> | <expr-7>
<expr-7> ::= [<expr-7> ('*' | '/')] <expr-8>

162

Interlude 1: Building a Parser for Haskell

<expr-8> ::= <expr-9> ['^' <expr-8>]
<expr-9> ::= <expr-10> ['.' <expr-9>]
<expr-10> ::= '\' <pat-naked>+ '->' <expr>
 | 'let' <clause> 'in' <expr>
 | 'if' <expr> 'then' <expr> 'else' <expr>
 | 'case' <expr> 'of' '{' <alt> [(';'|NEWLINE) <alt>]* '}'
 | <func-app>
<alt> ::= <pat> '->' <expr>
<func-app> ::= <term>+
<term> ::= <var-id> | <con-id> | '()' | '(' ','+ ')'
 | '(' <expr> ')'
 | '(' <expr> (',' <expr>)+) ')'
 | '[' [<expr> (',' <expr>)*] ']'
 | <literal>
<literal> ::= FLOAT | INTEGER | STRING | CHAR
<var-id> ::= VAR-ID
<con-id> ::= CON-ID

1 Lexing

As it turns out, lexing Haskell in Parsley is particularly easy: the Lexer class is compliant with the Haskell

specification!

import parsley.Parsley

object lexer {
 import parsley.token.{Lexer, Unicode, Basic}
 import parsley.token.descriptions.
{LexicalDesc, NameDesc, SymbolDesc, SpaceDesc, NumericDesc, ExponentDesc, EscapeDesc, TextDesc}
 import parsley.character.newline
 private val haskellDesc = LexicalDesc(
 NameDesc.plain.copy(
 identifierStart = Unicode(c => Character.isLetter(c) || c == '_'),
 identifierLetter =
 Unicode(c => Character.isLetterOrDigit(c) || c == '_' || c
 == '\''),
),
 SymbolDesc.plain.copy(
 hardKeywords = Set("if", "then", "else", "data", "where",
 "let", "in", "case", "of"),
 hardOperators = Set("$", "||", "&&", "<", "<=", ">", ">=", "==", "/
=", ":",
 "++", "+", "-", "*", "/", "^", "."),
),
 NumericDesc.plain.copy(
 octalExponentDesc = ExponentDesc.NoExponents,
 binaryExponentDesc = ExponentDesc.NoExponents,
),
 TextDesc.plain.copy(
 escapeSequences = EscapeDesc.haskell,
),

163

Interlude 1: Building a Parser for Haskell

 SpaceDesc.plain.copy(
 lineCommentStart = "--",
 multiLineCommentStart = "{-",
 multiLineCommentEnd = "-}",
 multiLineNestedComments = true,
 space = Basic(c => c == ' ' || c == '\t'),
)
)

 private val lexer = new Lexer(haskellDesc)

 val CON_ID = lexer.lexeme.names.identifier(Basic(_.isUpper))
 val VAR_ID = lexer.lexeme.names.identifier(Basic(_.isLower))
 val INTEGER = lexer.lexeme.natural.number
 val FLOAT = lexer.lexeme.floating.number
 val INT_OR_FLOAT = lexer.lexeme.unsignedCombined.number
 // Strictly speaking, Haskell files are probably encoded as UTF-8, but this
 // is not supported by Parsley _yet_
 val STRING = lexer.lexeme.string.fullUtf16
 val CHAR = lexer.lexeme.character.fullUtf16

 val NEWLINE = lexer.lexeme(newline).void

 def fully[A](p: Parsley[A]) = lexer.fully(p)

 val implicits = lexer.lexeme.symbol.implicits
}

The only tricky bit here is identifiers. Ideally, we can make a distinction between so-called constructor

ids and variable ids: this is done by using the identifier combinator, which refines what the first letter

of the identifier is allowed to be. I've exposed INT_OR_FLOAT to our interface here, since it prevents any

backtracking required by INTEGER | FLOAT. Also seen here, is the NEWLINE token, which we will use in the

parser to deliberate delimit newlines, but still ensure it consumes whitespace! The reason I have picked

the shouty-case names is to mimic how tokens sometimes look in grammars. This is purely stylistic, but will

help us distinguish between parts of our parser and the primitives of our lexer.

2 The AST + Parser Bridge Pattern

Now it's time to build the AST for our Haskell Parser to return. Since we'll be using the Parser Bridge pattern

anyway, I get a choice about whether or not I want position tracking for each node in the tree. Just to keep

the AST looking simple, I'll not track anything. Of course, if I did change my mind, I could do it here by

changing which template bridge trait is used. More interesting will be what bridge constructor shapes I

pick for each of the AST nodes. Let's start by just outlining the datatypes themselves and why they are how

they are:

object ast {
 import parsley.templates.*

164

Interlude 1: Building a Parser for Haskell

 case class HaskellProgram(lines: List[ProgramUnit])
 sealed trait ProgramUnit

 case class Data(id: ConId, tys: List[VarId], cons: List[Con]) extends ProgramUnit
 case class Con(id: ConId, tys: List[TyAtom])

 case class Decl(id: VarId, ty: Type) extends ProgramUnit

 case class Clause(id: VarId, pats: List[PatNaked], guard: Option[Expr], rhs: Expr)
 extends ProgramUnit
 sealed trait Pat
 case class PatCons(x: PatParen, xs: Pat) extends Pat
 sealed trait PatParen extends Pat
 case class PatApp(con: PatCon, args: List[PatNaked]) extends PatParen
 sealed trait PatNaked extends PatParen
 case object NilCon extends PatNaked with PureParserBridge0[PatNaked]
 case object Wild extends PatNaked with PureParserBridge0[PatNaked]
 case class NestedPat(pat: Pat) extends PatNaked
 case class PatTuple(xs: List[Pat]) extends PatNaked
 case class PatList(xs: List[Pat]) extends PatNaked
 sealed trait PatCon extends PatNaked
 case object ConsCon extends PatCon with PureParserBridge0[PatCon]

 sealed trait Type
 case class FunTy(argTy: Type_, resTy: Type) extends Type
 sealed trait Type_ extends Type
 case class TyApp(tyF: Type_, tyX: TyAtom) extends Type_
 sealed trait TyAtom extends Type_
 case object UnitTy extends TyAtom with PureParserBridge0[TyAtom]
 case class ListTy(ty: Type) extends TyAtom
 case class TupleTy(tys: List[Type]) extends TyAtom
 // This is needed if we want to maximise the well-typedness of the parser
 // For a parser as big as this one, it's definitely desirable: we can
 always
 // weaken the types later if we want to!
 case class ParenTy(ty: Type) extends TyAtom
 case object ListConTy extends TyAtom with PureParserBridge0[TyAtom]
 case object FunConTy extends TyAtom with PureParserBridge0[TyAtom]
 case class TupleConTy(arity: Int) extends TyAtom

 // We'll model this layer by layer, to maximise the flexiblity whilst
 maintaining
 // The type safety: by using subtyping, we can avoid useless wrapper
 constructors
 sealed trait Expr
 case class WeakApp(f: Expr, arg: Expr1) extends Expr
 sealed trait Expr1 extends Expr
 case class Or(x: Expr2, y: Expr1) extends Expr1
 sealed trait Expr2 extends Expr1
 case class And(x: Expr3, y: Expr2) extends Expr2
 sealed trait Expr3 extends Expr2
 // We could certainly compress this by factoring out the op!

165

Interlude 1: Building a Parser for Haskell

 // Notice that these operators have Expr4 on both sides: this implies they
 are
 // not left _or_ right associative! x < y < z is not legal in Haskell
 case class Less(x: Expr4, y: Expr4) extends Expr3
 case class LessEqual(x: Expr4, y: Expr4) extends Expr3
 case class Greater(x: Expr4, y: Expr4) extends Expr3
 case class GreaterEqual(x: Expr4, y: Expr4) extends Expr3
 case class Equal(x: Expr4, y: Expr4) extends Expr3
 case class NotEqual(x: Expr4, y: Expr4) extends Expr3
 sealed trait Expr4 extends Expr3
 case class Cons(x: Expr5, xs: Expr4) extends Expr4
 case class Append(xs: Expr5, ys: Expr4) extends Expr4
 sealed trait Expr5 extends Expr4
 case class Add(x: Expr5, y: Expr6) extends Expr5
 case class Sub(x: Expr5, y: Expr6) extends Expr5
 sealed trait Expr6 extends Expr5
 case class Negate(x: Expr6) extends Expr6
 sealed trait Expr7 extends Expr6
 case class Mul(x: Expr7, y: Expr8) extends Expr7
 case class Div(x: Expr7, y: Expr8) extends Expr7
 sealed trait Expr8 extends Expr7
 case class Exp(x: Expr9, y: Expr8) extends Expr8
 sealed trait Expr9 extends Expr8
 case class Comp(f: Expr10, g: Expr9) extends Expr9
 sealed trait Expr10 extends Expr9
 case class Lam(args: List[Pat], body: Expr) extends Expr10
 case class Let(binding: Clause, in: Expr) extends Expr10
 case class If(cond: Expr, thenExpr: Expr, elseExpr: Expr) extends Expr10
 case class Case(scrutinee: Expr, cases: List[Alt]) extends Expr10
 case class Alt(pat: Pat, body: Expr)
 sealed trait Expr10_ extends Expr10
 case class StrongApp(f: Expr10_, arg: Term) extends Expr10_

 sealed trait Term extends Expr10_
 case class ConId(v: String) extends Term, PatCon, TyAtom
 case class VarId(v: String) extends Term, PatNaked, TyAtom
 case object UnitCon extends Term, PatNaked, PureParserBridge0[Term
 & PatNaked]
 case class TupleCon(arity: Int) extends Term, PatCon
 case class ParensVal(x: Expr) extends Term
 case class TupleLit(xs: List[Expr]) extends Term
 case class ListLit(xs: List[Expr]) extends Term

 trait Literal extends Term, PatNaked
 case class HsInt(x: BigInt) extends Literal
 case class HsString(s: String) extends Literal
 case class HsChar(c: Int) extends Literal
 case class HsDouble(x: BigDecimal) extends Literal

 object WeakApp extends PureParserBridge2[Expr, Expr1, Expr]
 object Or extends PureParserBridge2[Expr2, Expr1, Expr1]
 object And extends PureParserBridge2[Expr3, Expr2, Expr2]
 object Less extends PureParserBridge2[Expr4, Expr4, Expr3]

166

Interlude 1: Building a Parser for Haskell

 object LessEqual extends PureParserBridge2[Expr4, Expr4, Expr3]
 object Greater extends PureParserBridge2[Expr4, Expr4, Expr3]
 object GreaterEqual extends PureParserBridge2[Expr4, Expr4, Expr3]
 object Equal extends PureParserBridge2[Expr4, Expr4, Expr3]
 object NotEqual extends PureParserBridge2[Expr4, Expr4, Expr3]
 object Cons extends PureParserBridge2[Expr5, Expr4, Expr4]
 object Append extends PureParserBridge2[Expr5, Expr4, Expr4]
 object Add extends PureParserBridge2[Expr5, Expr6, Expr5]
 object Sub extends PureParserBridge2[Expr5, Expr6, Expr5]
 object Negate extends PureParserBridge1[Expr6, Expr6]
 object Mul extends PureParserBridge2[Expr7, Expr8, Expr7]
 object Div extends PureParserBridge2[Expr7, Expr8, Expr7]
 object Exp extends PureParserBridge2[Expr9, Expr8, Expr8]
 object Comp extends PureParserBridge2[Expr10, Expr9, Expr9]
 object FunTy extends PureParserBridge2[Type_, Type, Type]
 object Lam extends PureParserBridge2[List[Pat], Expr, Lam]
 object Let extends PureParserBridge2[Clause, Expr, Let]
 object If extends PureParserBridge3[Expr, Expr, Expr, If]
 object Case extends PureParserBridge2[Expr, List[Alt], Case]
 object Alt extends PureParserBridge2[Pat, Expr, Alt]
 object ConId extends PureParserBridge1[String, ConId]
 object VarId extends PureParserBridge1[String, VarId]
 object TupleCon extends PureParserBridge1[Int, TupleCon]
 object ParensVal extends PureParserBridge1[Expr, ParensVal]
 object TupleLit extends PureParserBridge1[List[Expr], TupleLit]
 object ListLit extends PureParserBridge1[List[Expr], ListLit]
 object HsInt extends PureParserBridge1[BigInt, HsInt]
 object HsString extends PureParserBridge1[String, HsString]
 object HsChar extends PureParserBridge1[Int, HsChar]
 object HsDouble extends PureParserBridge1[BigDecimal, HsDouble]
 object Data extends PureParserBridge3[ConId, List[VarId], List[Con], Data]
 object Con extends PureParserBridge2[ConId, List[TyAtom], Con]
 object Decl extends PureParserBridge2[VarId, Type, Decl]

 object Clause extends PureParserBridge4[VarId, List[PatNaked], Option[Expr], Expr, Clause]
 object PatCons extends PureParserBridge2[PatParen, Pat, Pat]
 object PatApp extends PureParserBridge2[PatCon, List[PatNaked], PatApp]
 object NestedPat extends PureParserBridge1[Pat, NestedPat]
 object PatTuple extends PureParserBridge1[List[Pat], PatTuple]
 object PatList extends PureParserBridge1[List[Pat], PatList]
 object TupleConTy extends PureParserBridge1[Int, TupleConTy]
 object ParenTy extends PureParserBridge1[Type, ParenTy]
 object TupleTy extends PureParserBridge1[List[Type], TupleTy]
 object ListTy extends PureParserBridge1[Type, ListTy]
}

There is a lot of constructors here, but that's because the grammar is quite big. Notice that the shape of the

AST roughly follows the shape of the grammar (down to the naming). Subtyping has been used where the

same rule can appear in multiple places (ConId or VarId for instance). This helps keep the parser simple

whilst still providing a level of type safety. We know, for instance, the associativity of the operators purely

167

Interlude 1: Building a Parser for Haskell

based on their types alone. By generalising, we can see that left-associative types are shaped like (B, A)

=> B, right associative ones as (A, B) => B and non-associative ones as (A, A) => B. This is a helpful

guide for us, and in fact it will also ensure that we can't get the precedence table "wrong". A consequence,

as we'll see later, is we will be forced to use SOps instead of Ops in the precedence tables.

The bridges have all also been defined above as well, including those marked with PureParserBridge0,

which is done on the object itself.

Notably though, there are two AST nodes I'm not going to give bridge constructors to: StrongApp, TyApp.

If you look at the grammar, you'll see that the two relevant rules are both just many-like. Another option

for these datatypes would have been to have taken a List of the sub-parses. But, morally, Haskell function

applications are done one at a time so I've not flattened the structure, and as we'll see, we'll use a reduce

to handle these cases. In reality, providing a position to either of these two nodes is quite difficult, because

they are actually both delimited by ' ', so there really isn't a sensible position to latch on to.

3 Parsing

Now it's finally time to tackle the parser itself. Remember, our lexer handles all whitespace (except

newlines) for us, and our bridge constructors would handle position information for us. The type of the AST

is going to help us make sure that the parsers are constructed in the right way. One concern we need to be

aware of is notice areas of the grammar where ambiguity lies, and make sure we resolve it properly with

atomic (and only when needed!). Let's start at the bottom and work our way up: this means tackling, in

order, atoms, expressions, patterns, clauses, types, declarations, and then finally data.

3.1 Atoms of the Expression

Let's make a start with <term>. There is nothing particular special about this, but we will need to be careful

to handle the difference between tupled expressions and parenthesised expressions. There are a couple

of ways we can try and tackle this: the first is to write both cases out and be sure to atomic one of them,

so we can back out if required. The second is to parse them as one case together and then disambiguate

which of the constructors should be used in a bridge! I'm going to take the first approach for now, and then

we can revisit later. Now for the <term> parser:

import parsley.Parsley.atomic
import parsley.combinator.{sepBy, sepBy1, countSome}

import lexer.*
import lexer.implicits.given
import ast.*

val `<literal>` = atomic(HsDouble(FLOAT)) | HsInt(INTEGER) | HsString(STRING)
 | HsChar(CHAR)
val `<var-id>` = VarId(VAR_ID)
val `<con-id>` = ConId(CON_ID)

168

Interlude 1: Building a Parser for Haskell

val `<expr>`: Parsley[Expr] = /???/

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | atomic(TupleCon("(" ~> countSome(",") <~ ")"))
 | atomic(ParensVal("(" ~> `<expr>` <~ ")"))
 | TupleLit("(" ~> sepBy1(`<expr>`, ",") <~ ")")
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

Here, I've followed the structure of the grammar quite closely. I'm even making sure to follow the same

order that the grammar uses: this means that I use lazy val for any parser which forward references

another grammar rule (this is why I didn't need the laziness in the bridges). I'm making use of the sepBy and

sepBy1 combinators to handle the comma separated values and parse them into a list. Notice that there

are three instances of backtracking alone in this parser. Tuple constructions (like (,,,)), parenthesised

values, and tuple literals all share the (token. That being said, so does (), but there it's been treated as

a single atomic token by our implicit conversion, so no backtracking required at the branching level. As I

said, this could get expensive, so we will re-visit it later. The same crops up with FLOAT and INTEGER, which

may also overlap with each other: again, we will re-visit this later and use the FLOAT_OR_INT token instead.

To deal with the number of , representing the arity of a tuple constructor operator, I've also drafted up

a countSome combinator, which will parse its given parser one or more times, counting the number of

successes. You'll also notice that, in Scala, anything goes between backticks! For this parser, I'll go with

this notation to make it match a little more closely with the grammar itself (and for variety): it's up to you

whether or not you like this notation. One thing that's nice about it is that it clearly distinguishes between

our combinators and the grammar rules themselves.

3.2 Expressions

Next we'll tackle up to <expr>. By now, we should know that the correct tool to reach for is precedence.

While <expr-10> can be considered to have operators in it, they do not fit with any associativity in Haskell

so I will split them out for digestibility. Without further ado, let's get going:

import parsley.expr.{precedence, SOps, InfixL, InfixR, InfixN, Prefix, Atoms}

lazy val `<expr>`: Parsley[Expr] = precedence {
 SOps(InfixL)(WeakApp from "$") +:
 SOps(InfixR)(Or from "||") +:
 SOps(InfixR)(And from "&&") +:
 SOps(InfixN)(Less from "<", LessEqual from "<=",
 Greater from ">", GreaterEqual from ">=",
 Equal from "==", NotEqual from "/=") +:
 SOps(InfixR)(Cons from ":", Append from "++") +:
 SOps(InfixL)(Add from "+", Sub from "-") +:
 SOps(Prefix)(Negate from "-") +:
 SOps(InfixL)(Mul from "*", Div from "/") +:

169

Interlude 1: Building a Parser for Haskell

 SOps(InfixR)(Exp from "^") +:
 SOps(InfixR)(Comp from ".") +:
 `<expr-10>`
}
lazy val `<expr-10>` = Atoms(/???/)

Here we can see a whole bunch of interesting things! Firstly, up to this point we've been used to seeing Ops

in our precedence, where here we are using SOps and the Levels list. This is important, because our AST

is far more strongly typed. If we made each layer of the tree the same (Expr, Expr) => Expr shape, then

we could use Ops as we've been used to in other pages. However, since I opted to make a more strongly

typed tree using subtyping, we have to use the more complex and general SOps precedence architecture.

This has some really nice consequences:

1) if, say, I removed SOps(InfixR)(Exp <# "^") from the list, it would no longer compile 2) if, say, I

accidentally said SOps(InfixL)(Exp <# "^"), then it would no longer compile 3) if, say, I reordered the

lines in the list, then it would no longer compile 4) by using subtyping, we don't need to provide any explicit

wrapper constructors

Next up is the remaining three rules: <expr-10>, <alt>, and <func-app>.

import parsley.Parsley.{some, many}

val `<clause>`: Parsley[Clause] = /???/
val `<pat-naked>`: Parsley[PatNaked] = /???/
val `<pat>`: Parsley[Pat] = /???/

val `<alt>` = Alt(`<pat>`, "->" ~> `<expr>`)
lazy val `<func-app>` = `<term>`.reduceLeft(StrongApp.apply)
lazy val `<expr-10>` = Atoms(
 Lam("\\" ~> some(`<pat-naked>`), "->" ~> `<expr>`),
 Let("let" ~> `<clause>`, "in" ~> `<expr>`),
 If("if" ~> `<expr>`, "then" ~> `<expr>`, "else" ~> `<expr>`),
 Case("case" ~> `<expr>`,
 "of" ~> "{" ~> sepBy1(`<alt>`, (";" | NEWLINE) <~ many(NEWLINE))
 <~ "}"),
 `<func-app>`)

This section of the parser is much more straightforward: we are using the regular shape of the grammar

in conjunction with our bridge constructors. Notice here we are explicitly making use of NEWLINE,

so that we can make multi-line case statements. This is ok because we have explicit curly braces to

delimit the start and end of the case. Note here that the "\\" is just parsing a \, but the backslash

much be escaped to fit within the Scala string! The <func-app> rule is interesting, because it is the

same as some(`<term>`).map(_.reduceLeft(StrongApp)), but is more efficient, not having to have to

170

Interlude 1: Building a Parser for Haskell

construct an intermediate list. It's always a good idea to check out parsley's API to see if you can find any

hidden gems like this one!

Now we have tackled everything from <expr> down, we are now in a position to deal with <clause> and

its sub grammars.

3.3 Clauses

These set of parsers are similar to what we saw with <term>. There are going to be elements of ambiguity

in the grammar that need to be resolved with atomic, specifically those involving parentheses. But other

than that there isn't anything really new here.

import parsley.Parsley.many
import parsley.combinator.option
import parsley.expr.infix

lazy val `<clause>` =
 Clause(`<var-id>`, many(`<pat-naked>`), option(`<guard>`), "=" ~> `<expr>`)
lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | atomic(NestedPat("(" ~> `<pat>` <~ ")"))
 | PatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat>` = infix.right1(`<pat-paren>`)(PatCons from ":")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = atomic("(" ~> (ConsCon from ":") <~ ")")
 | TupleCon("(" ~> countSome(",") <~ ")")
 | (`<con-id>`)

lazy val `<guard>` = "|" ~> `<expr>`

Like I said, nothing too interesting here. Notice, however, that for <pat> I have used a infix.right1: we've

been used to using precedence, but in cases like these the chains are just so much more simple. Don't be

afraid to make use of them! There are plenty of atomics here that we will come back and eliminate later

on: notably, the atomic in <pat-paren> is used to guard against a <pat-con> being parsed without any

<pat-naked> - this needs to be parsed again in <pat-naked> itself.

3.4 Types

Again, here we can just see more examples of the same concepts we've already been working with. There

is a sense in which we've really reached the limit of stuff we need for our practical common cases: there

isn't much more to say until we try and deal with much more complex grammatical features.

171

Interlude 1: Building a Parser for Haskell

lazy val `<type>`: Parsley[Type] = infix.right1(`<type-app>`)(FunTy from "->")
lazy val `<type-app>` = `<type-atom>`.reduceLeft(TyApp.apply)
lazy val `<type-atom>` = `<type-con>` | `<var-id>` | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | atomic(ParenTy("(" ~> `<type>` <~ ")"))
 | TupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")
lazy val `<type-con>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> (FunConTy from "->") <~ ")")
 | atomic(TupleConTy("(" ~> countSome(",") <~ ")"))

We can see another instance of infix.right1 out in the wild here, as well as the other reduceLeft used

for type application. Yet again, there is some ambiguity evidenced by the atomic here, and just like in

the other instances, it's to do with parentheses. The second atomic in <type-con> is interesting: it's not

clear from the rule itself why it is there. In fact, it's there because we need to be able to backtrack out of

<type-con> during <type-atom>; however, since the ambiguity only arises from the tuple constructor (the

function constructor doesn't cause ambiguity in this case, because of the existing atomic), we don't need to

enable backtracking on the entire rule. Finally we can move onto the top level parsers and start tackling the

performance gotchas: this is the more challenging aspect of managing a parser of this size and complexity.

3.5 Declarations and Data

Here is a nice easy finish. These last rules are really just book-keeping. I'm also going to introduce a way

of running the parser directly.

import parsley.Parsley.some
import parsley.combinator.sepEndBy
import parsley.errors.ErrorBuilder

def parse[Err: ErrorBuilder](input: String) = `<program>`.parse(input)

lazy val `<program>` =
 fully(sepEndBy(`<data>` | atomic(`<declaration>`)
 | `<clause>`, some(NEWLINE)))

lazy val `<data>` = Data("data" ~> `<con-id>`, many(`<var-id>`), "="
 ~> `<constructors>`)
lazy val `<constructors>` = sepBy1(`<constructor>`, "|")
lazy val `<constructor>` = Con(`<con-id>`, many(`<type-atom>`))

lazy val `<declaration>` = Decl(`<var-id>`, "::" ~> `<type>`)

We do have to be careful here, there is some overlap between <declaration> and <clause>. This,

unfortunately, is unavoidable without more involved work, but the overlap is just a single variable name,

so it's fairly minor. That being said, really, the scope on that atomic is too big: once we've seen the "::",

172

Interlude 1: Building a Parser for Haskell

we know for sure that everything that follows (good or bad) is a type. At the moment, if something bad

happens in the type, it can backtrack all the way out and try reading a clause instead. This isn't too much of

a problem for us here, since the clause will also fail and the declaration's error message got further (and so

takes precedence), but suppose the backtracking allowed the parser to succeed somehow (perhaps it was

many(`<declaration>`)) then the error will for sure be in the wrong place!

The parse method is our hook to the outside world. I've written it "properly" here so that it is

parameterised by an instance of the ErrorBuilder typeclass. We could omit this, but then we'd always

have to run it with the ErrorBuilder in scope for whatever concrete Err we choose (in most cases,

String). It's useful to do this in case your unit tests want to test for the correctness of error messages!

4 Optimising the Parser

4.1 Fixing Parentheses Backtracking

Before we finish up this page, and move onto learning about error messages, let's deal with the last

remaining warts in this version of our parser. There are several instances of backtracking: some are very

avoidable, and others are potentially expensive. We will progress through them, in some cases making

incremental changes. As I've said before, dealing with backtracking in an effective way is in most cases the

trickiest part of actually writing a parser. Make sure you understand how the parser has been built up so

far and convince yourself about why each instance of atomic in the previous parsers has been necessary

before continuing.

4.1.1 <pat-con>, <type-con>, and <term>

These three grammar rules are very straightforward to factor out and remove the backtracking for, so we

will start with them first. Let's remind ourselves of the three rules in question and identify the parts we

can handle:

lazy val `<pat-con>` = atomic("(" ~> (ConsCon from ":") <~ ")")
 | TupleCon("(" ~> countSome(",") <~ ")")
 | (`<con-id>`)

val `<type-con>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> (FunConTy from "->") <~ ")")
 | atomic(TupleConTy("(" ~> countSome(",") <~ ")"))

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | atomic(TupleCon("(" ~> countSome(",") <~ ")"))
 | atomic(ParensVal("(" ~> `<expr>` <~ ")"))
 | TupleLit("(" ~> sepBy1(`<expr>`, ",") <~ ")")
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

173

Interlude 1: Building a Parser for Haskell

Now, with <pat-con> and <type-con>, they both contain backtracking because there are two portions of

the parser which lie within parentheses. You can see the same thing in the <term> parser, however, as we'll

see, <term> will require a bit more extra work to fix the second instance of backtracking. Thankfully, these

are all relatively easy to fix: we just need to distribute the parentheses through the rules that contain them

on the inside. This is a nice warm-up exercise:

lazy val `<pat-con>` = atomic("(" ~> (ConsCon from ":") <~ ")")
 | "(" ~> TupleCon(countSome(",")) <~ ")"
 | (`<con-id>`)

val `<type-con>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> (FunConTy from "->") <~ ")")
 | atomic("(" ~> TupleConTy(countSome(",")) <~ ")")

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | atomic("(" ~> TupleCon(countSome(",")) <~ ")")
 | atomic("(" ~> ParensVal(`<expr>`) <~ ")")
 | "(" ~> TupleLit(sepBy1(`<expr>`, ",")) <~ ")"
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

With the parentheses distributed, we can see that they are easily factored out (on both the left- and the

right-hand sides):

lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

val `<type-con>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> ((FunConTy from "->")
 | TupleConTy(countSome(","))) <~ ")")

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | "(" ~> (TupleCon(countSome(","))
 | atomic(ParensVal(`<expr>`))
 | TupleLit(sepBy1(`<expr>`, ","))
) <~ ")"
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

This has immediately eliminated three of the atomics, but one persists inside <term>: this is because

ParensVal and TupleLit both share an <expr>. This is a bit trickier to eliminate, but let's move on to

tackling these. Note that the other atomic in <type-con> is due to a conflict in the wider grammar, we can

look at that in part 4.

174

Interlude 1: Building a Parser for Haskell

4.1.2 <pat-naked>, <type-atom>, and <term> (again)

The next three grammar rules contain similar patterns to the last three, but solving the backtracking is less

obvious. Let's start by recapping what the three rules are:

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | atomic(NestedPat("(" ~> `<pat>` <~ ")"))
 | PatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")

lazy val `<type-atom>` = `<type-con>` | `<var-id>` | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | atomic(ParenTy("(" ~> `<type>` <~ ")"))
 | TupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | "(" ~> (TupleCon(countSome(","))
 | atomic(ParensVal(`<expr>`))
 | TupleLit(sepBy1(`<expr>`, ","))
) <~ ")"
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

First, let's do what we did to <term> to <pat-naked> and <type-atom>:

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | "(" ~> (atomic(NestedPat(`<pat>`))
 | PatTuple(sepBy1(`<pat>`, ","))
) <~ ")"
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")

lazy val `<type-atom>` = `<type-con>` | `<var-id>` | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | "(" ~> (atomic(ParenTy(`<type>`))
 | TupleTy(sepBy1(`<type>`, ","))
) <~ ")"

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | "(" ~> (TupleCon(countSome(","))
 | atomic(ParensVal(`<expr>`))
 | TupleLit(sepBy1(`<expr>`, ","))
) <~ ")"
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

175

Interlude 1: Building a Parser for Haskell

Hopefully you can see that all three rules are similar to each other: they all have an atomic inside the

factored parentheses. The problem is that they use different bridge constructors and the sepBy1 does not

allow for easy factoring. That being said, we could deal with this by creating... a new disambiguator bridge!

Let's take a look at them:

object NestedPatOrPatTuple extends PureParserBridge1[List[Pat], PatNaked] {
 def apply(ps: List[Pat]): PatNaked = ps match {
 case List(p) => NestedPat(p)
 case ps => PatTuple(ps)
 }
}

object ParenTyOrTupleTy extends PureParserBridge1[List[Type], TyAtom] {
 def apply(tys: List[Type]): TyAtom = tys match {
 case List(ty) => ParenTy(ty)
 case tys => TupleTy(tys)
 }
}

object TupleLitOrParensVal extends PureParserBridge1[List[Expr], Term] {
 def apply(xs: List[Expr]): Term = xs match {
 case List(x) => ParensVal(x)
 case xs => TupleLit(xs)
 }
}

Compared with bridge constructors, disambiguator bridges are used to arbitrate between several possible

instantiations dependending on the data that is fed to them. These bridges each encapsulate both of the

overlapping cases. If the list of results only has one element, then it indicates we should not be creating a

tuple. With these new bridges replacing the old ones, we can adjust our parsers:

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")

lazy val `<type-atom>` = `<type-con>` | `<var-id>` | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | ParenTyOrTupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")

val `<term>` = `<var-id>` | `<con-id>` | (UnitCon from "()")
 | "(" ~> (TupleCon(countSome(","))
 | TupleLitOrParensVal(sepBy1(`<expr>`, ","))
) <~ ")"
 | ListLit("[" ~> sepBy(`<expr>`, ",") <~ "]")
 | (`<literal>`)

176

Interlude 1: Building a Parser for Haskell

By making use of our special disambiguators bridge, we've eliminated the pesky atomics. I've put the

parentheses back inside the bridge call for the <pat-naked> and <type-atom> rules, because, in my

opinion, it looks a bit cleaner.

4.1.3 Numbers in <literal>

With the tools we've already developed so far, this one is easy. Let's remind ourselves of the rule first:

/*
val INTEGER = lexer.lexeme.numeric.natural.number
val FLOAT = lexer.lexeme.numeric.floating.number
val INT_OR_FLOAT = lexer.lexeme.numeric.unsignedCombined.number
*/
val `<literal>` = atomic(HsDouble(FLOAT)) | HsInt(INTEGER) | HsString(STRING)
 | HsChar(CHAR)

The problem here is that floats and ints share a common leading prefix: the whole number part. When we

defined the lexer, I mentioned that it supports a INT_OR_FLOAT token. Now it's time to make use of it to

remove this atomic. Our first thought might be to make a disambiguator bridge that can accommodate

either of them, and that would be a fine idea:

object HsIntOrDouble extends PureParserBridge1[Either[BigInt, BigDecimal], Literal]
 {
 def apply(x: Either[BigInt, BigDecimal]): Literal
 = x.fold(HsInt(_), HsDouble(_))
}

val `<literal>` = HsIntOrDouble(INT_OR_FLOAT) | HsString(STRING) | HsChar(CHAR)

And this works fine!

4.1.4 Loose ends

At this point, there are four atomics left in the entire parser: one in <type-con>, one in <pat-paren>, one

in <pat-naked>, and, finally, one in <program>. At this point it gets much harder to remove them without

altering the grammar substantially. Let's see how much more we can do to remove them and explore some

of the more dramatic changes it entails to the parser. We'll start with the atomic in <type-con>.

The reason for this atomic is more obvious when we compare it with <type-atom>:

177

Interlude 1: Building a Parser for Haskell

val `<type-con>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> ((FunConTy from "->")
 | TupleConTy(countSome(","))) <~ ")")
lazy val `<type-atom>` = `<type-con>` | `<var-id>` | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | ParenTyOrTupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")

The atomic in <type-con> is used to backtrack out of the parentheses, since ParenTyOrTupleTy will also

consume them if we didn't see a -> or a ,. Thankfully, <type-con> is used in one place in the parser, and

we are looking at it! To fix this atomic we just need to be destructive and stop following the grammar as

rigidly as we have been. Let's inline <type-con> into <type-atom> to start with:

lazy val `<type-atom>` = `<con-id>`
 | (ListConTy from "[]")
 | atomic("(" ~> ((FunConTy from "->")
 | TupleConTy(countSome(","))
) <~ ")")
 | (`<var-id>`) | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | ParenTyOrTupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")

Right, now that they have been put together, we can see the problem more clearly. Let's now reorganise

the parser so that the problematic parentheses appear next to each other: it's worth mentioning that, for

parsers without backtracking, we can always reorder the branches without consequence; the restriction

is that backtracking parsers cannot move ahead of their paired up branch.

lazy val `<type-atom>` = `<con-id>`
 | (ListConTy from "[]")
 | (`<var-id>`) | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | atomic("(" ~> ((FunConTy from "->")
 | TupleConTy(countSome(","))
) <~ ")")
 | ParenTyOrTupleTy("(" ~> sepBy1(`<type>`, ",") <~ ")")

This parser is a bit neater, and now we can apply our favourite tricks from part 1 to resolve this atomic:

lazy val `<type-atom>` = `<con-id>`
 | (ListConTy from "[]")
 | (`<var-id>`) | (UnitTy from "()")
 | ListTy("[" ~> `<type>` <~ "]")
 | "(" ~> ((FunConTy from "->")
 | TupleConTy(countSome(","))
 | ParenTyOrTupleTy(sepBy1(`<type>`, ","))
) <~ ")"

178

Interlude 1: Building a Parser for Haskell

Nice! One down, three to go. Let's have a look at the two involving patterns together:

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

I've omitted the <pat> rule here, since it's not relevant. Right, so the interaction of these rules is quite

intricate! The atomic in <pat-paren> is there because <pat-app> reads a <pat-con> and <pat-naked>

can also read one of those. Additionally, within <pat-naked>, the atomic is guarding against yet more

parentheses ambiguity caused by ConsCon, TupleCon, and NestedPatOrPatTuple. Now, our first thought

might be that we can eliminate the atomic within <pat-naked> with the same strategy we used for

<type-con>; we certainly could, but <pat-con> is used in two places, so doing so will cause duplication in

the parser. This is a trade-off: inlining <pat-con> will eliminate backtracking and make the parser more

efficient, but that comes at the cost of increased code size; in this case, in fact, the backtracking is limited

to a single character, which is relatively cheap, and the size of the rule is small, so inlining it will not increase

the code size significantly. It doesn't really matter either way what we do, so let's reinforce our factoring

skills and duplicate the code to eliminate the atomic!

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | `<con-id>`
 | atomic("(" ~> ((ConsCon from ":") | TupleCon(countSome(","))) <~ ")")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

In the above parser, I inlined the parser and reorganised it to bring the offending sub-rules together. We

know the drill by this point, let's factor that out:

179

Interlude 1: Building a Parser for Haskell

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | `<con-id>`
 | "(" ~> ((ConsCon from ":")
 | TupleCon(countSome(","))
 | NestedPatOrPatTuple(sepBy1(`<pat>`, ","))
) <~ ")"
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

Nice, another atomic down! Now, what about the atomic in <pat-paren>? Well, it turns out that, by

eliminating the first atomic, we've stopped ourselves from being able to deal with this one! The reason is

that we've cannibalised the common <pat-con> structure into our factored parentheses in <pat-naked>:

oops! This atomic is actually worse than the other one, since it can backtrack out of an entire <pat-con>

as opposed to just a single (. So, could we undo what we've just done and fix this one instead? We certainly

could; but this transformation is very violent since <pat-naked> appears in other places in the parser. That

being said, lets do it!

The first step is to return to our old parser:

lazy val `<pat-naked>`: Parsley[PatNaked] =
 `<var-id>` | atomic(`<pat-con>`)
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

Now, we know that the <pat-con> is the problematic bit here, so let's break the <pat-naked> into two

rules:

180

Interlude 1: Building a Parser for Haskell

lazy val `<pat-naked>` = atomic(`<pat-con>`) | `<pat-naked'>`
lazy val `<pat-naked'>`: Parsley[PatNaked] =
 `<var-id>`
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = atomic(`<pat-app>`) | atomic(`<pat-con>`) | `<pat-
naked'>`
lazy val `<pat-app>` = PatApp(`<pat-con>`, some(`<pat-naked>`))
lazy val `<pat-con>` = "(" ~> ((ConsCon from ":") | TupleCon(countSome(",")))
 <~ ")"
 | (`<con-id>`)

Now, notice that I've inlined <pat-naked> into <pat-paren>. The reason I did this is to make it clear that

the part we are trying to factor is the <pat-con>. In fact, let's do a little bit of shuffling and move it into

<pat-app>:

lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked'>`
lazy val `<pat-app>` = atomic(PatApp(`<pat-con>`, some(`<pat-naked>`)))
 | `<pat-con>`

Now, the aim here is to smash those <pat-con>s together! We can introduce a new disambiguator bridge

to handle this, and switch some for many:

object PatAppIfNonEmpty extends PureParserBridge2[PatCon, List[PatNaked], PatParen]
 {
 def apply(con: PatCon, args: List[PatNaked]): PatParen = args match {
 case Nil => con
 case args => PatApp(con, args)
 }
}

Now, compared to the original PatApp bridge constructor, this one returns a PatParen instead of a PatApp.

This is because that is the common supertype of PatApp and PatCon. Let's see what the parser looks like

now:

lazy val `<pat-paren>` = atomic(`<pat-app>`) | `<pat-naked'>`
lazy val `<pat-app>` = PatAppIfNonEmpty(`<pat-con>`, many(`<pat-naked>`))

Now, since we've switched to a many, we can actually push both of our atomics down into the <pat-con>

and leave it at that:

181

Interlude 1: Building a Parser for Haskell

lazy val `<pat-naked>` = `<pat-con>` | `<pat-naked'>`
lazy val `<pat-naked'>`: Parsley[PatNaked] =
 `<var-id>`
 | (UnitCon from "()") | (NilCon from "[]") | `<literal>` | (Wild from "_")
 | NestedPatOrPatTuple("(" ~> sepBy1(`<pat>`, ",") <~ ")")
 | PatList("[" ~> sepBy(`<pat>`, ",") <~ "]")
lazy val `<pat-paren>` = `<pat-app>` | `<pat-naked'>`
lazy val `<pat-app>` = PatAppIfNonEmpty(`<pat-con>`, many(`<pat-naked>`))
lazy val `<pat-con>` = atomic("(" ~> ((ConsCon from ":")
 | TupleCon(countSome(","))) <~ ")")
 | (`<con-id>`)

So, can we remove that last atomic? No. At least not without a collosal amount of very destructive

refactoring of the grammar. What we can do, however, is make its scope ever so slightly smaller:

lazy val `<pat-con>` = atomic("(" ~> ((ConsCon from ":")
 | TupleCon(countSome(",")))) <~ ")"
 | (`<con-id>`)

All I've done there is move it one parser to the left, that way, we commit to the branch as soon as we've seen

either a , or a : and can't backtrack out of the closing bracket. That's as good as we're going to get. A little

unsatisfying, perhaps, but it's really such a minor point.

So, now what? Well, we have one final atomic we can look at. And it's trickier than it looks.

val `<declaration>` = Decl(`<var-id>`, "::" ~> `<type>`)

val `<clause>` =
 Clause(`<var-id>`, many(`<pat-naked>`), option(`<guard>`), "=" ~> `<expr>`)

val `<program>` =
 fully(sepEndBy(`<data>` | atomic(`<declaration>`)
 | `<clause>`, some(NEWLINE)))

I've skipped out the irrelevant <data> parser here. So, from the outset, this atomic doesn't look so bad:

both <declaration> and <clause> share a <var-id>. This, in theory, should be easy to factor out. The

problem is the bridges: when we factor out <var-id> we no longer have the right shape to use their bridges.

You might think that the solution is to introduce an Either, like we did with the INT_OR_FLOAT lexeme.

This would work out ok, but is a little clunky. The new bridge factory would be dealing with Either[Type,

(List[PatNaked], Option[Expr], Expr)])]. Let's start with this approach first, and then see an

alternative that keeps the two bridges separate and avoids the tuple.

// These make use of `ast.Clause` because they are defined outside of `ast` (in
 this .md file)
type PartialClause = (List[PatNaked], Option[Expr], Expr)

182

Interlude 1: Building a Parser for Haskell

object DeclOrClause extends PureParserBridge2[VarId, Either[Type, PartialClause], ProgramUnit]
 {

 def apply(id: VarId, declOrClause: Either[Type, PartialClause]): ProgramUnit
 =
 declOrClause match {
 case Left(ty) => Decl(id, ty)
 case Right((args, guard, body))
 => ast.Clause(id, args, guard, body)
 }
}

object Clause extends PureParserBridge2[VarId, PartialClause, Clause] {
 def apply(id: VarId, partialClause: PartialClause): Clause = {
 val (args, guard, body) = partialClause
 ast.Clause(id, args, guard, body)
 }
}

Now, to make this work nicely, I'm going to make use of the <+> combinator: pronounced "sum", this parser

works like | except it returns its result into a co-product (Either). Using this, we can define the factored

<program>:

import parsley.syntax.zipped.*

val `<declaration>` = "::" ~> `<type>`

val `<partial-clause>` = (many(`<pat-naked>`), option(`<guard>`), "="
 ~> `<expr>`).zipped
val `<clause>` = Clause(`<var-id>`, `<partial-clause>`)

val `<decl-or-clause>` = DeclOrClause(`<var-id>`, `<declaration>` <
+> `<partial-clause>`)
val `<program>` =
 fully(sepEndBy(`<data>` | `<decl-or-clause>`, some(NEWLINE)))

Why have we got two <clause>s? Well, we also need a <clause> for the let-expressions further down

the parser. Now, there isn't anything wrong with this parser, and its a perfectly reasonable approach.

Let's also take a look at the other way we could have done this. This time, we'll change the two original

bridge constructors, but won't introduce a third:

183

Interlude 1: Building a Parser for Haskell

// These make use of `ast.Clause` because they are defined outside of `ast` (in
 this .md file)
object Decl extends PureParserBridge1[Type, VarId => ast.Decl] {
 def apply(ty: Type): VarId => ast.Decl = ast.Decl(_, ty)
}
object Clause extends PureParserBridge3[List[PatNaked], Option[Expr], Expr, VarId
 => ast.Clause] {
 def apply(pats: List[PatNaked], guard: Option[Expr], rhs: Expr): VarId
 => ast.Clause =
 ast.Clause(_, pats, guard, rhs)
}

This time, the two bridge constructors return functions that take the factored VarId. How does this change

the parser?

val `<declaration>` = Decl("::" ~> `<type>`)

val `<partial-clause>` = Clause(many(`<pat-naked>`), option(`<guard>`), "="
 ~> `<expr>`)
val `<clause>` = `<var-id>` <**> `<partial-clause>`

val `<decl-or-clause>` = `<var-id>` <**> (`<declaration>` | `<partial-clause>`)
val `<program>` =
 fully(sepEndBy(`<data>` | `<decl-or-clause>`, some(NEWLINE)))

This also works completely fine. This time, we use <**> to apply the <var-id> to the partially built AST

nodes. The advantage of this style is that it's a little more concise, and involves less unnecessary object

construction. However, this version has a subtle flaw: suppose we wanted to add position information to

the AST, then where would the pos go? The position information would be in the var-id>, and we'd have

to extract it out in our bridges, for example:

object Decl extends PureParserBridge1[Type, VarId => Decl] {
 def apply(ty: Type): VarId => Decl = v => Decl(v, ty)(v.pos)
}
object Clause extends PureParserBridge3[List[PatNaked], Option[Expr], Expr, VarId
 => Clause] {
 def apply(pats: List[PatNaked], guard: Option[Expr], rhs: Expr): VarId
 => Clause =
 v => Clause(v, pats, guard, rhs)(v.pos)
}

This is really brittle: it is relying on the VarId type having and exposing its position information. In contrast,

here's how our other bridge factory would be transformed:

184

Interlude 1: Building a Parser for Haskell

object DeclOrClause
 extends PosParserBridge2[VarId, Either[Type, PartialClause], ProgramUnit] {
 def apply(id: VarId, declOrClause: Either[Type, PartialClause])
 (pos: (Int, Int)): ProgramUnit = declOrClause match {
 case Left(ty) => Decl(id, ty)(pos)
 case Right((args, guard, body)) => Clause(id, args, guard, body)(pos)
 }
}

Much more straightforward, with no effect on any other bridge! This is worth considering if you do find

yourself in this sort of position (no pun intended). That being said, the <**>-based version is slightly cleaner

and a tiny bit more efficient. Regardless of which method we pick, however, that pesky atomic is gone! That

leaves us in a final state with a single atomic which has a maximum backtrack of one character. In other

words, this parser runs in linear-time. Excellent!

5 Concluding Thoughts

In this (rather long) page, we've explored the implementation of an entire parser for a subset of Haskell

from scratch. We've also seen a few techniques for factoring out common branches of the parser and

applied everything we've learnt so far to a real example. We are going to come back to this parser later in

the series: we've got to add better error messages, and deal with Haskell's indentation-sensitive off-side

rule!

185

Customising Error Messages

Customising Error Messages

Previously, in Effective Lexing we saw how we could extend our parsers to handle whitespace and lexing.

In this wiki post we'll finally address error messages. Thoughout all the other entries in this series I have

neglected to talk about error messages at all, but they are a very important part of a parser.

1 Adjusting Error Content

I'm going to start with the parser from last time, but before we introduced the Lexer class. The reason

for this is that the Lexer functionality has error messages baked into it, which means this post would be

even shorter! It's not perfect, however, but it does make some good error messages for your basic lexemes.

There is nothing stopping you from using the techniques here to change those messages if you wish though.

Simply put: the original grammar has more room for exploration for us.

import parsley.Parsley, Parsley.atomic

object lexer {
 import parsley.Parsley.{eof, many}
 import parsley.character.{digit, whitespace, string, item, endOfLine}
 import parsley.combinator.manyTill

 private def symbol(str: String) = atomic(string(str)).void
 given Conversion[String, Parsley[Unit]] = symbol

 private val lineComment = "//" ~> manyTill(item, endOfLine).void
 private val multiComment = "/*" ~> manyTill(item, "*/").void
 private val comment = lineComment | multiComment
 private val skipWhitespace = many(whitespace.void | comment).void

 private def lexeme[A](p: =>Parsley[A]) = p <~ skipWhitespace
 private def token[A](p: =>Parsley[A]) = lexeme(atomic(p))
 def fully[A](p: =>Parsley[A]): Parsley[A] = skipWhitespace ~> p <~ eof

 val number: Parsley[BigInt] =
 token(digit.foldLeft1[BigInt](0)((n, d) => n * 10 + d.asDigit))

 object implicits {
 given Conversion[String, Parsley[Unit]] = s => lexeme(symbol(s))
 }
}

object expressions {
 import parsley.expr.{precedence, Ops, InfixL}

 import lexer.implicits.given
 import lexer.{number, fully}

186

Customising Error Messages

 private lazy val atom: Parsley[BigInt] = "(" ~> expr <~ ")" | number
 private lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*" as (_ * _)),
 Ops(InfixL)("+" as (_ + _), "-" as (_ - _)))

 val parser = fully(expr)
 def parse(input: String) = parser.parse(input)
}

So, before, we saw how this ran on succesful cases. Let's now start to see how it works on bad input.

expressions.parse("5d")
// res0: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "d"
// expected "*", "+", "-", "/*", "//", digit, end of input, or whitespace
// >5d
// ^)

Let's start by breaking this error down first and understanding what the components of it are and why this

information has appeared. The first line of the error reports the line and column number of the message

(in Parsley hard tabs are treated as aligning to the nearest 4th column). If you are using parseFromFile

then this will also display the filename. The last two lines always show the location at which the error

occured. This is going to be the point at which the error that eventually ended up being reported occured,

not necessarily where the parser ended up. This can be improved in the future. Next you can see the

unexpected and expected clauses. The unexpected "d" here is telling us roughly what we already knew. The

expected clause on the other hand tells us all the things we could have used to fix our problem. There is

definitely a lot of noise here though.

First let's just make sure we understand where each of these alternatives came from. Firstly, it's clear that

since the last thing we read was a 5, a good way of carrying on would be reading another digit to make the

number bigger. We could also read a space or start a comment as a way of making more progress too. Of

course, another way we could make progress would have been using one of the operators and in the process

continued our expression. Finally we could simply remove the d and it would run perfectly fine. Notice how

(and) are not suggested as alternatives despite appearing in the parser: 5(or 5) makes no sense either.

As another small example, let's see what happens to the error if we add a space between the 5 and the d.

expressions.parse("5 d")
// res1: Result[String, BigInt] = Failure((line 1, column 3):
// unexpected "d"
// expected "*", "+", "-", "/*", "//", end of input, or whitespace
// >5 d
// ^)

Neat, so this time round digit is no longer a valid alternative: clearly the number has come to an end

because we wrote a space. But the other possibilities from before are still valid. So, how can we start making

improvements? There are seven core combinators available to us for this purpose:

187

Customising Error Messages

• .label or ? is the most common combinator you'll be using. It influences the way an expected behaves

for the parser it annotates. Importantly, if the parser it is annotating failed and consumed input in the

process, then the label will not be applied. We'll see an example of why this is useful later.

• fail is useful, but a bit of a sledgehammer. When fail (or any of its derivative combinators like

guardAgainst) is used, it removes the unexpected and expected information and just replaces it with

a given message. If there are multiple fails that appear in the same message, they are each written on

a newline.

• unexpected is the least commonly used combinator in practice. When it is used, it will, like fail,

immediately fails except it reports a custom unexpected message. Currently, only one unexpected

message can be present in the error at once, so this is not very useful unless you really know what you

are doing.

• .hide is a method that removes the output of a parser from the error.

• .explain is a method that can provide reasons for a parser's failure. If the parser can recover and move

onto other alternatives, the reasons may be lost. But they can still be quite nice when used in the correct

place!

• amend and entrench are a pair of combinators that work together to correct the position of some error

messages. These are quite rare in practice.

All of these can be found in the parsley.errors.combinator module.

1.1 Using label

From this section, we are only going to be using label and hide, as they are by far the most useful and

effective of the five methods. That being said, explain can be very useful, but we'll find there are no

compelling use-cases for it in this example. Let's start off by giving a label to comment and see what happens:

import parsley.errors.combinator.*

val comment = (lineComment | multiComment).label("comment")

Now let's run our parser from before:

expressions.parse("5d")
// res3: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "d"
// expected "*", "+", "-", comment, digit, end of input, or whitespace
// >5d
// ^)

188

Customising Error Messages

Nice! So, if you compare the two, you'll notice that "/*" and "//" both disappeared from the message,

but comment was added. You can tell when label is being used because there are not quotes surrounding

the items. Knowing this, you can probably guess that digit, eof, and whitespace all have error labels of

their own.

1.1.1 Using hide to trim away junk

This is a good start, but normally we might say that whitespace suggestions in an error message are

normally just noise: of course we expect to be able to write whitespace in places, it's not usually the solution

to someone's problem. This makes it a good candidate for the hide combinator:

import parsley.errors.combinator.*

val skipWhitespace = many(whitespace.void | comment).void.hide

Now let's check again:

expressions.parse("5d")
// res4: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "d"
// expected "*", "+", "-", digit, or end of input
// >5d
// ^)

Great! The hide combinator has removed the information from the error message, and now it's looking a

lot cleaner. But what if we started writing a comment, what would happen then?

expressions.parse("5/*")
// res5: Result[String, BigInt] = Failure((line 1, column 4):
// unexpected end of input
// expected "*/" or any character
// >5/*
// ^)

So, as I mentioned earlier, hide is just a label, and label will not relabel something if it fails and consumes

input. That means, by opening our comment but not finishing it, we can see some different suggestions. In

this case, end of input is not allowed, and any character will work to extend the comment, but clearly */ is

a way to properly end it. Let's add a label to that, however, to make it a bit friendlier:

val lineComment = "//" *> manyTill(item, endOfLine.label("end of
 comment")).void
val multiComment = "/*" *> manyTill(item, "*/".label("end of comment")).void

189

Customising Error Messages

Now we get a more informative error message of:

expressions.parse("5/*")
// res6: Result[String, BigInt] = Failure((line 1, column 4):
// unexpected end of input
// expected any character or end of comment
// >5/*
// ^)

Great! Now let's turn our attention back to expressions and not whitespace.

1.1.2 Labelling our numbers

Let's take a look at a very simple bad input and see how we can improve on it:

expressions.parse("d")
// res7: Result[String, BigInt] = Failure((line 1, column 1):
// unexpected "d"
// expected "(" or digit
// >d
// ^)

So this time, we can see two possible ways of resolving this error are opening brackets, or a digit. Now

digit is really a poor name here, what we really mean is integer or number:

val number =
 token(digit.foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit)).label("number")

Now we get, the following, nicer error message:

expressions.parse("d")
// res8: Result[String, BigInt] = Failure((line 1, column 1):
// unexpected "d"
// expected "(" or number
// >d
// ^)

expressions.parse("5x")
// res9: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "x"
// expected "*", "+", "-", digit, or end of input
// >5x
// ^)

190

Customising Error Messages

But notice in the second error message, again we have been given digit and not number as our alternative.

This is good, once we've started reading a number by reading 5 it would be inappropriate to suggest a

number as a good next step. But digit here is not particularly descriptive and we can do better still:

val number =
 token(
 digit.label("end of number").foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit)
).label("number")

This gives us, again, a much nicer message:

expressions.parse("5x")
// res10: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "x"
// expected "*", "+", "-", end of input, or end of number
// >5x
// ^)

1.1.3 Merging multiple labels

With an example grammar as small as this, I think we are almost done here! The last thing we could improve

is the repetition of "*", "+", and "-". Really, we know that there is nothing special about any of them

individually, so we could more concisely replace this them with arithmetic operator, or since we only

have arithmetic operators here operator will do. we don't need to do anything special here, when multiple

labels are encountered with the same name, they will only appear once!

lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*".label("operator") as (_ * _)),
 Ops(InfixL)("+".label("operator") as (_ + _), "-".label("operator") as (_
 - _)))

Now we arrive at our final form:

expressions.parse("5x")
// res11: Result[String, BigInt] = Failure((line 1, column 2):
// unexpected "x"
// expected end of input, end of number, or operator
// >5x
// ^)

expressions.parse(" 67 + ")
// res12: Result[String, BigInt] = Failure((line 1, column 7):
// unexpected end of input
// expected "(" or number
// > 67 +

191

Customising Error Messages

// ^)

Great! Now obviously you could take this even further and make "(" become opening parenthesis or

something, but I don't really feel that adds much.

1.2 Wrapping up the Expression Example

Hopefully, you get a sense of how much of an art form and subjective writing good error messages is,

but Parsley provides decent error messages out of the box (now based on megaparsec's error messages

from Haskell). It doesn't have to be hard though, so just play around and see what feels right. I would say,

however, there is an interesting phenomenon in the programming languages and compilers community:

compiler writers write error messages that are tailored for compiler writers. It's an interesting problem

when you think about it: the person who writes error messages is a compiler expert, and so they often

rely on the concepts they understand. That means they are more prone to including the names of stuff in

the grammar to describe syntax problems, and so on. While this is great for experts and compiler writers,

it seemingly forgets people who are new to programming or this "grammar" in particular. That can make

error messages needlessly intimidating for the average Joe. The take home from this is to try and avoid

labelling expr with .label("expression"), because that just ends up making something that is no longer

useful or informative:

expressions.parse("")
// res13: Result[String, BigInt] = Failure((line 1, column 1):
// unexpected end of input
// expected expression
// >
// ^)

What use is that to anybody? The same idea applies to statements, and various other abstract grammatical

notions. Something like "expected if statement, while loop, for loop, variable declaration,

or assignment" is so much more meaningful than "expected statement". I would ask that you keep that

in mind #. To conclude our work with this parser, here is the full code of the finished product. Obviously,

with the Lexer, some of this work is already done, but you can still apply the lessons learnt here to the

wider parser!

import parsley.Parsley, Parsley.{atomic, eof, many}
import parsley.errors.combinator.*

object lexer {
 import parsley.character.{digit, whitespace, string, item, endOfLine}
 import parsley.combinator.manyTill
 import parsley.syntax.character.given

 private def symbol(str: String) = atomic(string(str)).void

192

Customising Error Messages

 private val lineComment = "//" ~> manyTill(item, endOfLine).void.label("end
 of comment")
 private val multiComment = "/*" ~> manyTill(item, "*/").void.label("end of
 comment")
 private val comment = (lineComment | multiComment).label("comment")
 private val skipWhitespace = many(whitespace.void | comment).void.hide

 private def lexeme[A](p: =>Parsley[A]) = p <~ skipWhitespace
 private def token[A](p: =>Parsley[A]) = lexeme(atomic(p))
 def fully[A](p: =>Parsley[A]): Parsley[A] = skipWhitespace ~> p <~ eof

 val number: Parsley[BigInt] = token {
 digit.label("end of number").foldLeft1[BigInt](0)((n, d) => n * 10
 + d.asDigit)
 }.label("number")

 object implicits {
 given Conversion[String, Parsley[Unit]] = s => lexeme(symbol(s))
 }
}

object expressions {
 import parsley.expr.{precedence, Ops, InfixL}

 import lexer.implicits.given // or * if using parsley's (it uses Scala 2)
 import lexer.{number, fully}

 private lazy val atom: Parsley[BigInt] = "(" ~> expr <~ ")" | number
 private lazy val expr = precedence[BigInt](atom)(
 Ops(InfixL)("*".label("operator") as (_ * _)),
 Ops(InfixL)("+".label("operator") as (_ + _), "-".label("operator") as
 (_ - _)))

 val parser = fully(expr)
 def parse(input: String) = parser.parse(input)
}

1.3 Using explain

So far, we've seen how label can be used to clean up error messages and make them much more

presentable and informative. Another way of achieving this is by using the explain combinator. Unlike

label this is much more freeform and when used properly can be incredibly effective. Essentially, with

explain you are leveraging your own knowledge about the context you are in to provide a much more

tailored and hand-crafted message to the user. It can be used to both provide an additional hint in an

otherwise poor message or to enrich the error with suggestions for how the error might be fixed.

Using it is just as easy as using label and you can't really go wrong with it: other than being a bit... too

descriptive. Again, the Lexer class already makes use of this technique to improve its own error messages,

193

Customising Error Messages

but let's suppose we wanted to write some of its functionality ourselves. Let's cook up a string literal parser,

supporting some (limited) escape sequences.

import parsley.Parsley
import parsley.syntax.character.given
import parsley.combinator.choice
import parsley.character.*
import parsley.errors.combinator.*

val escapeChar =
 choice('n' as '\n', 't' as '\t', '\"', '\\')
val stringLetter =
 noneOf('\"', '\\').label("string character") |
 ('\\' ~> escapeChar).label("escape character")

val stringLiteral =
 ('\"' ~> stringOfMany(stringLetter) <~ '\"'.label("end of
 string")).label("string")

Let's start with something like this. If we run a couple of examples, we can see where it performs well and

where it performs less well:

stringLiteral.parse("")
// res16: Result[String, String] = Failure((line 1, column 1):
// unexpected end of input
// expected string
// >
// ^)

stringLiteral.parse("\"")
// res17: Result[String, String] = Failure((line 1, column 2):
// unexpected end of input
// expected end of string, escape character, or string character
// >"
// ^)

stringLiteral.parse("\"\\a")
// res18: Result[String, String] = Failure((line 1, column 3):
// unexpected "a"
// expected """, "\", "n", or "t"
// >"\a
// ^)

So, for the first two cases, the error message performs quite well. But the last message is a bit noisy. One

possible approach to improve this could be to label each alternative to give them a slightly clearer name,

which would result in something like:

194

Customising Error Messages

stringLiteral.parse("\"\\a")
// res19: Result[String, String] = Failure((line 1, column 3):
// unexpected "a"
// expected \", \\, \n, or \t
// >"\a
// ^)

This is better, but a bit misleading, we don't expect a \! Now, you could instead opt to remove the

backslashes, but then that doesn't give much information about why these things are expected. Another

option would be to label all alternatives with some common name:

val escapeChar =
 choice('n' as '\n', 't' as '\t', '\"', '\\')
 .label("end of escape sequence")

Which would yield

stringLiteral.parse("\"\\a")
// res20: Result[String, String] = Failure((line 1, column 3):
// unexpected "a"
// expected end of escape sequence
// >"\a
// ^)

This is a bit more helpful, in that it does provide a good name to what we expected. But at the same time it

doesn't help the user to understand how to fix their problem: "what is an escape sequence". This is similar

to the "statement" problem I described above. In this case, (and indeed in the "statement" case), we can

add an explain to help the user understand what we mean:

val escapeChar =
 choice('n' as '\n', 't' as '\t', '\"', '\\')
 .label("end of escape sequence")
 .explain("valid escape sequences include \\n, \\t, \\\", or \\\\")

The explain combinator annotates failure messages with an additional reason. These can stack, and are

displayed each on their own line in the error message. With this in place, let's see what the new error

message is:

stringLiteral.parse("\"\\a")
// res21: Result[String, String] = Failure((line 1, column 3):
// unexpected "a"
// expected end of escape sequence
// valid escape sequences include \n, \t, \", or \\
// >"\a
// ^)

195

Customising Error Messages

This time, we keep the name of the expected token clear and concise, but we also help the user to

understand what this actually means. The error isn't misleading in the sense that we aren't suggesting that

a \n would fix the parse error after the \ we already wrote, but have have said that we expect the end of

the escape as well as demonstrated what that would look like. This is great!

There isn't much more to say about the explain combinator than that really. Hopefully this already gives

you a sense of how useful it can be. Like I mentioned before, the poor error problem that compiler writers

often suffer from can be nicely solved using explain. For instance, a message like "... expected statement ...

valid statements include 'if statements', 'loops', or 'assignments'" is subjectively better than both of the

alternatives (namely "expected statement" or the one that lists out every single alternative). This has the

benefits of both worlds: for an experienced user, the error message gets straight to the point, and for the

newcomer, the error message provides a bit more information that can help them learn the terminology.

2 Adjusting Error Formatting

As we've seen in this post, the error messages produced by parsley are fairly readable. They are broken

into two kinds: "vanilla" errors built up of "expected", "unexpected", and "reason" clauses; and "specialised"

errors built up solely of "message" clauses. So far, we have only seen examples of the "vanilla" errors, and we

will see the "specialised" errors in the next post. These have been so far formatted using Parsley's default

mechanism, which creates an error as a string. This is ok for basic use, but in projects where there is some

pre-existing error format, then maintaining consistency across error messages is much harder without

parsing the resulting String errors to extract their content: this is, frankly, ridiculous to expect! Moreover,

suppose you wanted to unit test your parser in both successful and failing cases, then performing raw string

comparision is really brittle, especially if Parsley adjusts the format slightly!

Luckily, Parsley 3.0.0 introduced an abstraction layer between the error messages that the parsers work

with and the final resulting error message. This means that actually, the error message format is not only

configurable, but doesn't have to be a String! The final part of this post is dedicated to understanding how

to work with this mechanism, using Parsley's own unit test formatter as an example.

Firstly, I want to give examples of both types of format, and annotate the names given to each part of them:

┌───┐
│ Vanilla Error │
│ ┌────────────────┐◄──────── position │
│ source │ │ │
│ │ │ line col│ │
│ ▼ │ │ ││ │
│ ┌─────┐ │ ▼ ▼│ end of input │
│ In foo.txt (line 1, column 5): │ │
│ ┌─────────────────────┐ │ │
│unexpected ─────►│ │ │ ┌───── expected │
│ │ ┌──────────┐ ◄──────────┘ │ │
│ unexpected end of input ▼ │
│ ┌──────────────────────────────────────┐ │

196

Customising Error Messages

│ expected "(", "negate", digit, or letter │
│ │ └──────┘ └───┘ └────┘ ◄────── named│
│ │ ▲ └──────────┘ │ │
│ │ │ │ │
│ │ raw │ │
│ └─────────────────┬───────────┘ │
│ '-' is a binary operator │ │
│ └──────────────────────┘ │ │
│ ┌──────┐ ▲ │ │
│ │>3+4- │ │ expected items │
│ │ ^│ │ │
│ └──────┘ └───────────────── reason │
│ ▲ │
│ │ │
│ line info │
└───┘

┌───┐
│ Specialised Error │
│ ┌────────────────┐◄──────── position │
│ source │ │ │
│ │ │ line col │
│ ▼ │ │ │ │
│ ┌─────┐ │ ▼ ▼ │
│ In foo.txt (line 1, column 5): │
│ │
│ ┌───► something went wrong │
│ │ │
│ message ──┼───► it looks like a binary operator has no argument │
│ │ │
│ └───► '-' is a binary operator │
│ ┌──────┐ │
│ │>3+4- │ │
│ │ ^│ │
│ └──────┘ │
│ ▲ │
│ │ │
│ line info │
└───┘

As you can see, the content for a specialised error is (ironically) plainer than a vanilla message. This means

that the errors are much more customisable from the parser side, but it is less rich in parser generated

information than the vanilla is. Hopefully you can see that both error messages still have a very similar

shape other than the error info lines themselves. In both cases, and not shown by the diagrams, the main

contents of the error -- either unexpected, expected, reasons, and line info; or messages and line info -- are

called "error info lines".

For vanilla errors, notice that the unexpected and expected lines make references to raw, named, and end

of input: these are collectively known as items. The .label combinator produces named items, the eof

combinator produces the end of input item, and unlabelled combinators produce raw items.

197

Customising Error Messages

Together, all these components are referenced (by these names!) by the ErrorBuilder trait. The way it

works is that a concrete ErrorBuilder has to be provided to the .parse method of a parser, and when

the parser has finished failing, the builder is used to construct the final error message, converting the

internal representation that Parsley uses into the desired output specified by the builder: you can think

of it like a conversation. The internals of Parsley take a portion of the information it has, and talks to the

builder how to format it into another intermediate form; it then will feed this new information into another

method of the builder after possibly more collection. To allow all of this plumbing to be fed together and

maintain maximum flexiblity to the user, the builder makes use of "associated types". Let's take a look at

the definition of ErrorBuilder without all the sub-formatters to understand what I mean:

trait ErrorBuilder[Err] {
 // This is the top level function which takes all the sub-parts
 // and combines them into the final `Err`
 def build(pos: Position, source: Source, lines: ErrorInfoLines): Err

 type Position
 type Source
 type ErrorInfoLines
 type ExpectedItems
 type Messages
 type UnexpectedLine
 type ExpectedLine
 type Message
 type LineInfo
 type Item
 type Raw <: Item
 type Named <: Item
 type EndOfInput <: Item

 ...
}

Wow, that's a lot of types! Essentially, each concrete implementation of this trait must specify what each

of those types are. This means that the representation of the error is as flexible as possible. In the build

method, you can see that the types Position, Source, and ErrorInfoLines are all referenced. Indeed,

you can also see these marked on both diagrams: in other words, build is responsible for the general shape

of both types of error message.

To understand how these might come about, let's take a step "into" the formatter to find the sources of

values for Position, Source, and ErrorInfoLines:

198

Customising Error Messages

trait ErrorBuilder[Err] {
 ...

 def pos(line: Int, col: Int): Position
 def source(sourceName: Option[String]): Source

 def vanillaError(unexpected: UnexpectedLine, expected: ExpectedLine,
 reasons: Messages, line: LineInfo): ErrorInfoLines
 def specialisedError(msgs: Messages, line: LineInfo): ErrorInfoLines

 ...
}

Hopefully, you can start to see how this might be structured:

• To get a Position value for the final error message, the line and column information is fed straight from

the parser into the pos method, which can then hand back the "formatted" position.

• To get the Source name, the filename (if it exists!) is fed into the source method, which can then be fed

into format by the internals of Parsley.

• To collect up all the ErrorInfoLines there are two possible approaches depending on whether the

error is vanilla or specialised. In both cases, the relevant information is passed in and can be "formatted"

into whatever ErrorInfoLines is: for instance, the default in Parsley has type ErrorInfoLines =

Seq[String]. Neither of these two methods take raw information from the parser, they have clearly

been fed through another part of the formatter, given their types.

I won't continue traversing deeper and deeper into the system, because it's just going to be the same idea

over and over again. But I will note all the "terminal" methods that do take information directly from the

parser:

trait ErrorBuilder[Err] {
 ...

 def pos(line: Int, col: Int): Position
 def source(sourceName: Option[String]): Source

 def reason(reason: String): Message
 def message(msg: String): Message
 def lineInfo(line: String, linesBefore: Seq[String],
 linesAfter: Seq[String], errorPointsAt: Int): LineInfo
 val numLinesBefore: Int
 val numLinesAfter: Int

 def raw(item: String): Raw
 def named(item: String): Named
 val endOfInput: EndOfInput

199

Customising Error Messages

 def unexpectedToken(cs: Iterable[Char], amountOfInputParserWanted: Int,
 lexicalError: Boolean): Token
}

The two attributes numLinesBefore and numLinesAfter are used by the Parsley internals to decide how

many raw lines of input both before and after the problematic line to provide to lineInfo. In a pinch,

overriding these values from DefaultErrorBuilder is a quick way of changing how specific your errors

are to other lines in the input. The unexpectedToken method is special, but I'll leave a discussion of this

another page. All of the other methods in the ErrorBuilder will make use of the refined results from the

methods above.

I hope that, by this point, you have a reasonable idea of how this system all ties together. But, if you don't,

or you want an example, take a look at how parsley's own unit tests format error messages to be easier

to pattern match on and test against, the implementation can be found here.

200

Advanced Error Messages

Advanced Error Messages

Previously, we saw the most basic approach to improving error messages: .label and .explain. However,

the other tools I listed in the post are valuable in their own right, but can be slightly less common. However,

most of the time, their use is abstracted by other higher-level combinators, which will be the focus of this

page. The API Guide page on Error Message Combinators covers the core combinators more thoroughly.

1 A Statement Language

In this section, we'll set the stage for the discussion of the error messages. We'll start by defining an

evaluator for a langauge (as opposed to an AST), and then write a parser that generates partially evaluated

expressions and collapse it to form an interpreter. The language supports conditionals, assignment,

arithmetic, and boolean expressions; variables must be integers.

1.1 A Stateful Evaluator

The language will be evaluated by producing a value of type Eval[Unit], a monad that threads a variable

environment through the program, handling any out-of-scope variables. Just for fun, I'll use the cats

functional programming library to do this, as it makes it very easy to express. The environment will be

carried around in a StateT state monad, and errors contains within an Either[String, _] type. Don't

worry if you don't understand how it works; our main focus is obviously the parser:

import cats.syntax.all.given
object eval {
 import cats.data.StateT
 import cats.Monad
 type Error[A] = Either[String, A]
 type Eval[A] = StateT[Error, Map[String, Int], A]

 def number(x: Int): Eval[Int] = Monad[Eval].pure(x)
 def bool(b: Boolean): Eval[Boolean] = Monad[Eval].pure(b)

 def negate(mx: Eval[Int]): Eval[Int] = mx.map(0 - _)
 def add(mx: Eval[Int], my: Eval[Int]): Eval[Int] = (mx, my).mapN(_ + _)
 def sub(mx: Eval[Int], my: Eval[Int]): Eval[Int] = (mx, my).mapN(_ - _)
 def mul(mx: Eval[Int], my: Eval[Int]): Eval[Int] = (mx, my).mapN(_ * _)

 def less(mx: Eval[Int], my: Eval[Int]): Eval[Boolean] = (mx, my).mapN(_
 < _)
 def equal(mx: Eval[Int], my: Eval[Int]): Eval[Boolean] = (mx, my).mapN(_
 == _)

 def and(mx: Eval[Boolean], my: Eval[Boolean]): Eval[Boolean]
 = cond(mx, my, bool(false))
 def or(mx: Eval[Boolean], my: Eval[Boolean]): Eval[Boolean]
 = cond(mx, bool(true), my)

201

Advanced Error Messages

 def not(mx: Eval[Boolean]): Eval[Boolean] = mx.map(!_)

 def ask(v: String): Eval[Int] =
 StateT.inspectF(_.get(v).toRight(s"variable $v out of scope"))
 def store(v: String, mx: Eval[Int]): Eval[Unit] =
 mx.flatMap(x => StateT.modify(_.updated(v, x)))

 def cond[A](b: Eval[Boolean], t: Eval[A], e: Eval[A]): Eval[A] =
 Monad[Eval].ifM(b)(t, e)
}

The ask and store operations above allow for interaction with the environment, and the other operations

are just "lifting" the relevant operations into our monad. Just so you can see how this might be stitched

together, here are some example programs:

import eval.*
store("x", add(number(5), ask("v"))).runS(Map("v" -> 3))
// res0: Either[String, Map[String, Int]] = Right(Map(v -> 3, x -> 8))
store("x", add(number(5), ask("v"))).runS(Map.empty)
// res1: Either[String, Map[String, Int]] = Left(variable v out of scope)

List(
 store("v", number(3)), // v = 3;
 store("x", add(number(5), ask("v"))), // x = 5 + v;
 cond(less(ask("x"), ask("v")), // if x < v {
 store("v", ask("x")), // v = x } else {
 store("v", number(6))), // v = 6 };
).sequence.runS(Map.empty)
// res2: Either[String, Map[String, Int]] = Right(Map(v -> 6, x -> 8))

If we start off with an initial variable assignment of {v = 3}, then the Eval value representing x = 5

+ v will finish with a final environment of {v = 3, x = 8}. If we don't provide an initial value to v,

the evaluation errors with an "out of scope" error. The sequence method can be used to compose multiple

statements in the langauge.

1.2 A Parser

We'll be using the same lexer as we've been accustomed to recently (with some extra keywords and

operators), so let's see what the parser is like:

import parsley.Parsley.atomic
import lexer.implicits.given
import lexer.{number, identifier, fully}
import parsley.combinator.sepEndBy
import parsley.syntax.zipped.*
import parsley.expr.{Prefix, InfixR, InfixL, precedence, Ops}

202

Advanced Error Messages

def infixN[A, B](p: Parsley[A])(op: Parsley[(A, A) => B]): Parsley[B] =
 (p, op, p).zipped((x, f, y) => f(x, y))

lazy val atom: Parsley[Eval[Int]] = "(" ~> expr <~ ")"
 | number.map(eval.number)
 | identifier.map(ask)
lazy val expr = precedence[Eval[Int]](atom)(
 Ops(Prefix)("negate" as negate),
 Ops(InfixL)("*" as mul),
 Ops(InfixL)("+" as add, "-" as sub))

lazy val blit: Parsley[Eval[Boolean]] = "true".as(bool(true))
 | "false".as(bool(false))
lazy val comp: Parsley[Eval[Boolean]] = infixN(expr)("<".as(less)
 | "==".as(equal))
lazy val btom: Parsley[Eval[Boolean]] = atomic("(" ~> pred) <~ ")" | blit
 | comp
lazy val pred = precedence[Eval[Boolean]](btom)(
 Ops(Prefix)("not" as not),
 Ops(InfixR)("&&" as and),
 Ops(InfixR)("||" as or))

def braces[A](p: =>Parsley[A]) = "{" ~> p <~ "}"

lazy val asgnStmt: Parsley[Eval[Unit]] = (identifier, "="
 ~> expr).zipped(store)
lazy val ifStmt: Parsley[Eval[Unit]] =
 ("if" ~> pred, braces(stmts), "else" ~> braces(stmts)).zipped(cond[Unit])
lazy val stmt: Parsley[Eval[Unit]] = asgnStmt | ifStmt
lazy val stmts: Parsley[Eval[Unit]] = sepEndBy(stmt, ";").map(_.sequence.void)

val parser = fully(stmts)

I'm not going to say too much about this, since all of the ideas have been covered in previous pages (and

the Haskell example!). The evaluator and the parser can be stitched together to form an interpreter:

def interpret(input: String)(ctx: Map[String, Int]) = {
 parser.parse(input).toEither.flatMap(_.runS(ctx))
}

Let's run an example through it and get used to the syntax:

203

Advanced Error Messages

interpret(
 """x = 7;
 |if x < v && 5 < v {
 | y = 1;
 |}
 |else {
 | y = 0;
 |};
 |x = 0;
 """.stripMargin)(Map("v" -> 8))
// res3: Either[String, Map[String, Int]] = Right(Map(v -> 8, x -> 0, y -> 1))

The |s here are being used by Scala's stripMargin method to remove the leading whitespace on our

multi-line strings. We can see that the syntax of this language makes use of semi-colons for delimiting,

and if statements require a semi-colon after the else. In addition, no parentheses are required for the

if, but braces are mandated. This syntax is a little unorthodox, which is great for us because it'll give us a

lot of opportunities to test out our new tools! I've neglected to add any .labels or .explains here, but

obviously there are plenty of opportunities.

1.3 Motivation

Let's start by seeing what happens if we accidentally write a ; before an else:

interpret("if true {}; else {};")(Map.empty)
// res4: Either[String, Map[String, Int]] = Left((line 1, column 11):
// unexpected ";"
// expected else
// >if true {}; else {};
// ^)

This is what we'd expect, since at this point we'd expect an else. We could detail this issue for the user with

an .explain, and explain that semi-colons are not something that work in this position:

import parsley.errors.combinator.*
lazy val ifStmt: Parsley[Eval[Unit]] =
 ("if" ~> pred
 , braces(stmts)
 , "else".explain("semi-colons cannot be written after ifs")
 ~> braces(stmts)
).zipped(cond[Unit])

What effect will this have?

204

Advanced Error Messages

interpret("if true {}; else {};")(Map.empty)
// res5: Either[String, Map[String, Int]] = Left((line 1, column 11):
// unexpected ";"
// expected else
// semi-colons cannot be written after ifs
// >if true {}; else {};
// ^)

Ok, this is better! But what if I wrote something else there instead?

interpret("if true {}a else {};")(Map.empty)
// res6: Either[String, Map[String, Int]] = Left((line 1, column 11):
// unexpected "a"
// expected else
// semi-colons cannot be written after ifs
// >if true {}a else {};
// ^)

Ah, right, not so good anymore. We could go back and make the explain a bit more general, of course, but

that means we've lost out on the helpful prompt to the user about our language's syntax. So, what can we

do here? This is where the Verified Errors pattern comes into play.

2 Verified Errors

The problem with using explain to write about a specific instance of a problem is that there is no guarantee

that the problem actually occurred. This is what we observed above, where an a was misreported as a semi-

colon! The Verified Errors pattern tells us the following:

Parse bad input to verify that contextual obligations are met before raising an error.

Basically, if we want to report an error about a spurious semi-colon, we better check that it is

actually there first! There are a few properties we'd expect of these errors and there are a few ways

of formulating them. One way is using amend, hide, empty, and so on, but most of the time this

pattern follows a regular enough structure that it has been encoded into a family of combinators in

parsley.errors.patterns.VerifiedErrors:

205

Advanced Error Messages

import parsley.character.char
import parsley.errors.patterns.VerifiedErrors

val _semiCheck =
 char(';').verifiedExplain("semi-colons cannot be written between `if` and
 `else`")

lazy val ifStmt: Parsley[Eval[Unit]] =
 ("if" ~> pred
 , braces(stmts)
 , ("else" | _semiCheck) ~> braces(stmts)
).zipped(cond[Unit])

Here, if we can't read an else, we immediately try to parse _semiCheck, which reads a semi-colon (and is

careful to hide it from the errors, otherwise we might see expected else or ";"). If it succeeds, then we

fail generate a reason for the failure. If it didn't successfully parse, nothing happens, because the contextual

obligation for the error was not met. A parser like _semiCheck is known as an "error widget": prefix them

with _ to make them more immediately identifiable.

With this we have:

interpret("if true {}; else {};")(Map.empty)
// res7: Either[String, Map[String, Int]] = Left((line 1, column 11):
// unexpected ";"
// expected else
// semi-colons cannot be written between `if` and `else`
// >if true {}; else {};
// ^)

interpret("if true {}a else {};")(Map.empty)
// res8: Either[String, Map[String, Int]] = Left((line 1, column 11):
// unexpected "a"
// expected else
// >if true {}a else {};
// ^)

This is exactly what we wanted! So, where else can we apply this technique? Let's see what happens if we

miss out a closing brace:

interpret("if true {} else {")(Map.empty)
// res9: Either[String, Map[String, Int]] = Left((line 1, column 18):
// unexpected end of input
// expected "}", identifier, or if
// >if true {} else {
// ^)

206

Advanced Error Messages

We could, again, give the user a helping hand here, and point out that they have an unclosed something that

they need to close. Again, we could start by using the .explain combinator directly, on the }. Let's see

what effect this will have:

def braces[A](p: =>Parsley[A]) = "{" ~> p <~ "}".explain("unclosed `if` or
 `else`")

This will give us the more helpful error:

interpret("if true {} else {")(Map.empty)
// res10: Either[String, Map[String, Int]] = Left((line 1, column 18):
// unexpected end of input
// expected "}", identifier, or if
// unclosed `if` or `else`
// >if true {} else {
// ^)

This time, adding extra input won't cause a problem, so is this fine? Well, what about this input:

interpret(
 """if true {}
 |else {
 | x = 7a
 |}""".stripMargin)(Map.empty)
// res11: Either[String, Map[String, Int]] = Left((line 3, column 7):
// unexpected "a"
// expected ";", "}", *, +, -, or digit
// unclosed `if` or `else`
// >else {
// > x = 7a
// ^
// >})

Argh! The else is closed this time, but since } is a valid continuation character we've triggered our explain

message. Again, we can fix this by using a verified error (on eof)

import parsley.Parsley.eof
val _eofCheck = eof.verifiedExplain("unclosed `if` or `else`")
def braces[A](p: =>Parsley[A]) = "{" ~> p <~ ("}" | _eofCheck)

This time we've latched onto whether or not there is any input left at all. This will work fine!

interpret(
 """if true {}
 |else {
 | x = 7a
 |}""".stripMargin)(Map.empty)

207

Advanced Error Messages

// res12: Either[String, Map[String, Int]] = Left((line 3, column 7):
// unexpected "a"
// expected "}"
// >else {
// > x = 7a
// ^
// >})

interpret(
 """if true {}
 |else {
 | x = 7
 |""".stripMargin)(Map.empty)
// res13: Either[String, Map[String, Int]] = Left((line 4, column 1):
// unexpected end of input
// expected ";", "}", *, +, or -
// unclosed `if` or `else`
// > x = 7
// >
// ^)

Perfect #. What now? Well, another area where the user might trip up is thinking that you can assign

booleans to variables! Let's see what the errors are:

interpret("x = true")(Map.empty)
// res14: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected keyword true
// expected "(", identifier, negate, or number
// >x = true
// ^^^^)

interpret("x = 10 < 9")(Map.empty)
// res15: Either[String, Map[String, Int]] = Left((line 1, column 8):
// unexpected "<"
// expected ";", *, +, -, or end of input
// >x = 10 < 9
// ^)

interpret("x = not true")(Map.empty)
// res16: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected keyword not
// expected "(", identifier, negate, or number
// >x = not true
// ^^^)

Now, there is a cheap way of dealing with this and an expensive one. Let's start cheap and see what needs

to be done and how effective it is. The first thing we can recognise is that we can special case not, true,

and false using the same strategy as before. We can choose to attach a new widget to the expr inside the

asgn, let's start by defining the widget (using some more generalised machinery):

208

Advanced Error Messages

import parsley.combinator.choice
val _boolCheck = choice(
 lexer.nonLexemeSymbol("true"),
 lexer.nonLexemeSymbol("false"),
 lexer.nonLexemeSymbol("not"),
).verifiedExplain("booleans cannot be assigned to variables")

The lexer.nonLexemeSymbol combinator here is allowing for the parsing of keywords without reading

trailing whitespace, which would make our error messages wider. Now, we can add this to the asgn:

lazy val asgnStmt: Parsley[Eval[Unit]] =
 (identifier, "=" ~> (expr | _boolCheck)).zipped(store)

And now for the errors:

interpret("x = true")(Map.empty)
// res17: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected keyword true
// expected "(", identifier, negate, or number
// booleans cannot be assigned to variables
// >x = true
// ^^^^)

interpret("x = 10 < 9")(Map.empty)
// res18: Either[String, Map[String, Int]] = Left((line 1, column 8):
// unexpected "<"
// expected ";", *, +, -, or end of input
// >x = 10 < 9
// ^)

interpret("x = not true")(Map.empty)
// res19: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected keyword not
// expected "(", identifier, negate, or number
// booleans cannot be assigned to variables
// >x = not true
// ^^^)

So, we've cracked the leading edge of the booleans, but we are still no closer to managing to deal with <, ==.

These are significantly trickier to handle with our current approach, because they occur after some input

has already been read. We would need to insert them as alternatives at every point where they could be

"valid" predictions. This is far from ideal. Note that we don't really need to worry about && and ||, since

we are going to have to have already found one of <, ==, not, true, or false before we reach it anyway.

Instead, we need to look towards a different technique, the Preventative Error.

209

Advanced Error Messages

3 Preventative Errors

The problem with verified errors is that they have to follow the valid alternatives of a parse, which

may be disparate and scattered. Not to mention that moving the widget to a shared parser may

actually invalidate its context anyway! Instead, a preventative error allows us to proactively rule out

bad input. This means trying to parse it before trying the "working" alternatives. Compared with

verified errors, which are a last resort, preventative errors are by nature more costly. Again, there

are a few properties we'd expect of these errors and there are a few ways of formulating them

and parsley.errors.patterns.PreventativeErrors contains a family of combinators for the most

common formulation:

import parsley.errors.patterns.PreventativeErrors

val _noCompCheck =

 choice(lexer.nonLexemeSymbol("<"), lexer.nonLexemeSymbol("==")).preventativeExplain(
 reason = "booleans cannot be assigned to variables",
 labels = "end of arithmetic expression"
)

The idea here is to try and parse one of < or == and fail immediately if this is possible, otherwise, the

combinator succeeds, and we can start parsing something else. Because raising the error happens more

eagerly, it is important to provide error labels to describe what valid things can come next since these

parsers won't actually get executed and contribute themselves! It should be placed at a point where it is

suspected the < and == could be read, namely after an expression in the asgn. So, let's see what the effect

of the error will be:

lazy val asgnStmt: Parsley[Eval[Unit]] =
 (identifier, "=" ~> ((expr <~ _noCompCheck) | _boolCheck)).zipped(store)

interpret("x = 10 < 9")(Map.empty)
// res20: Either[String, Map[String, Int]] = Left((line 1, column 8):
// unexpected "<"
// expected end of arithmetic expression
// booleans cannot be assigned to variables
// >x = 10 < 9
// ^)

This looks pretty good! However, it's now looking a little messier, and could do with some abstraction:

def _noBool[A](p: Parsley[A]): Parsley[A] = (p <~ _noCompCheck) | _boolCheck

lazy val asgnStmt: Parsley[Eval[Unit]] = (identifier, "="
 ~> _noBool(expr)).zipped(store)

210

Advanced Error Messages

This is a bit tidier! When I said that there was a cheap way and an expensive way of implementing

these improved errors earlier, the expensive way would have been using a preventative error from the

outset, trying to parse an entire boolean expression up-front. This may be much more expensive than the

reasonably small <7 character checks we've been doing. However, it is instructive to see what this might

have looked like, now just by changing _noBool:

import parsley.errors.VanillaGen

val _noBoolCheck = pred.void.preventWith(
 err = new VanillaGen[Unit] {
 override def reason(x: Unit) = Some("booleans cannot be assigned to
 variables")
 override def unexpected(x: Unit) = VanillaGen.NamedItem("boolean
 expression")
 },
 labels = "arithmetic expression"
)

def _noBool[A](p: Parsley[A]): Parsley[A] = _noBoolCheck ~> p

This version makes use of the VanillaGen, which can allow for a bit more fine-grained configuration,

including changing the unexpected message within the error. By parsing a full pred, we are certain to rule

out all problematic inputs immediately, but this could be much more costly - there is a trade-off to be had!

The errors are all as follows:

interpret("x = true")(Map.empty)
// res21: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected boolean expression
// expected arithmetic expression
// booleans cannot be assigned to variables
// >x = true
// ^^^^)

interpret("x = 10 < 9")(Map.empty)
// res22: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected boolean expression
// expected arithmetic expression
// booleans cannot be assigned to variables
// >x = 10 < 9
// ^^^^^^)

interpret("x = not true")(Map.empty)
// res23: Either[String, Map[String, Int]] = Left((line 1, column 5):
// unexpected boolean expression
// expected arithmetic expression
// booleans cannot be assigned to variables
// >x = not true
// ^^^^^^^^)

211

Advanced Error Messages

The flip side is that these errors are just about as good as it gets for this particular problem: notice that

the error caret covers the entire bad expression, and reports it under a concise naming. It can also catch

errors with bracketed expressions, which may be missed by the previous implementations (though it is still

possible to catch these with some work).

4 Conclusion

The main point of this page is to demonstrate how much of an important technique "parsing bad inputs"

can be to generating informative and precise error messages. Of course, there are other formulations of

these patterns, and they can address some of the shortcomings of the above implementations. In future, I

may add a discussion of how these patterns are implemented in practice, to show how more bespoke ones

can be useful.

212

`@parsley.debuggable`

Debugging Annotation
@parsley.debuggable

Compared with the basic debugging combinators found in vanilla parsley, the parsley-debug library is

designed to work as a more complete system. The key part of this system from the parsley-end is the

@debuggable annotation, which is used to collect up the names of your parsers so that they appear in the

debugger views in the form you defined them in.


This annotation relies on Scala's macro system. This means that its implementation is dependent

on the version of Scala being used. Scala 3's implementation is far more stable, but requires the

@experimental annotation to use (or the -experimental compiler flag) until macro annotations

are standard.

For Scala 2, there are some caveats to the annotation dicussed below. For Scala 2.13,

you must enable the -Ymacro-annotation flag, and for Scala 2.12 you must use the

org.scalamacros:paradise compiler plugin.

How to use

Using @debuggable is very easy! Assuming your parsers are kept in either one or more classes or objects,

just simply annotate them with the annotation, and you're good to go.

import parsley.quick.*
import parsley.debuggable

@debuggable // (or @experimental @debuggable for Scala 3)
object parsers {
 val p = char('a')
 val q = p ~> digit
 val r = p <~> q

 // there can be more in here, including a `def main` method.
}

What you will find, as a result, is that if you use the parsley-debug debugging functionality, the names p,

q, and r will automatically appear in the outputs.

213

`@parsley.debuggable`

Scala 2 Woes

The way this macro works is by demanding the values within the annotated object or class

that have type Parsley[?] and adding all of them to an internal map accessible via the

parsley.debug.util.Collector API. In Scala 3, the tree provided to the annotation macro is already

typechecked, so this query is effortless and works very robustly. In Scala 2, the tree provided is not

typechecked; this means that the annotation has to send the AST to the typer within the compiler to obtain

the information it needs.

The problem is that, because of the various transformations that have happened to the AST already, the

typer often crashes! There are a few different things that I've observed can cause this (it's certainly not

exhaustive):

• Anonymous class instances being typechecked will crash.

• The use of overloaded methods with the annotated object doesn't necessarily work correctly.

• You must not shadow the enclosing class/object's name as one of its values.

The annotation can mostly check for these things for you. However, if it complains, it is up to you to fix it!

This is easy: just add explicit type signatures. When you do this, debuggable will behind the scenes remove

the body of the definition (replacing it with ???), removing scope for screwing with the typer (which is

unnecessary, because we already have the type).

Obviously, this is really not ideal, and when things do go wrong it can be quite spectatular. This is why I

absolutely 100% recommend using Scala 3.

214

Attaching Debugger Views

Attaching Debugger Views

The new functionality in parsley-debug involves attaching a debugger to a parser that will be ran. There

are two combinators to do this found in parsley.debug.combinator: attach, and attachReusable.

Before we see these, it will be useful to understand how DebugViews work.


By importing parsley.debug.combinator.DebuggerOps, you will have access to the method-

style implementation of these combinators.

DebugView

The DebugView.SingleUse and DebugView.Reusable traits represent renderers for debug information.

By default, parsley-debug includes PrintView, which can be used to "render" debug information out

onto the console, or perhaps to a file (or any PrintStream/OutputStream). The reusability aspect refers

to whether or not multiple such views can work simultaneously: see attachReusable below.

The views themselves do not necessarily have to directly render the debugging content themselves, they

could be remote connections, for instance; but the point is that they are what is attached to a specific

parser. When the parser is ran, the debug combinator collects the information, and the view processes that

information in some way. This process is done via attachment.

attach and attachReusable

The attach combinator takes a DebugView (reusable or otherwise) and optionally a "string rules" function,

which determines whether or not a value is eagerly turned into a string or preserved in its original form

within the internal "DebugTree". In return, you get a new parser, which will feed debugging information to

the provided DebugView.


You should only use the parser returned by attach in one place! If you want to debug a parser that

appears in more than one place, you must use attachReusable.

In contrast, attachReusable is similar, but takes a by-name DebugView, which may be recreated each use,

and returns a function that produces new Parsley values. The idea is that if you need to use the parser in

more than one place, you call the function more than once to produce independently bound parsers.

215

`PrintView`

PrintView (parsley-debug)

The core parsley-debug library contains one view, namely PrintView. This can be used in place of more

advanced functionality present in the other "companion" libraries. It is perhaps less featureful than the

"vanilla" .debug combinator, which supports breakpoints, but does work cross platform and across all

Scala versions. The advantage over .debug, of course, is that for large-scale debugging, @debuggable is

far more ergonomic to apply to a whole parser, and gives more intermediate information. With no internal

state, this view is reusable, however, concurrent executions within a parser (if used with attachReusable)

may interleave and be confusing.


Please see the @parsley.debuggable page first, as this is used to provide meaningful names for

this functionality.

Configuration

The PrintView configuration is very simple. By default, the PrintView object will print the debug trace

directly to Console.out. It is possible to use the PrintView.apply methods to produce new views that

print their output elsewhere: for instance to a file.

What does it look like?

As an example, here is the trace without @debuggable:

import parsley.quick.*
import parsley.debug.combinator.*
import parsley.debug.PrintView

val hello = (atomic(string("hello"))
 | (string("hey")
 | string("hi"))
)
// hello: Parsley[String] = parsley.Parsley@11a3c31e

hello.attach(PrintView).parse("hey")
// |'s parse tree for input:
//
// hey
//
//
// [|]: ("{1}" [(1,1) -> (1,4)], Success - [hey])
// |

216

`PrintView`

// +-[atomic]: ("" [(1,1) -> (1,1)], Failure)
// | |
// | +-[string(hello)]: ("he" [(1,1) -> (1,3)], Failure)
// |
// +-[|(1)]: ("{1}" [(1,1) -> (1,4)], Success - [hey])
// |
// +-[string(hey)(1)]: ("hey" [(1,1) -> (1,4)], Success - [hey])
// res0: Result[String, String] = Success(hey)

hello.attach(PrintView).parse("hi")
// |'s parse tree for input:
//
// hi
//
//
// [|]: ("{1}" [(1,1) -> (1,2)], Failure)
// |
// +-[atomic]: ("" [(1,1) -> (1,1)], Failure)
// | |
// | +-[string(hello)]: ("h" [(1,1) -> (1,2)], Failure)
// |
// +-[|(1)]: ("{1}" [(1,1) -> (1,2)], Failure)
// |
// +-[string(hey)(1)]: ("h" [(1,1) -> (1,2)], Failure)
// res1: Result[String, String] = Failure((line 1, column 1):
// unexpected "hi"
// expected "hello" or "hey"
// >hi
// ^^)

As you can see, without an @debuggable annotation, this just prints the names of the combinators used

to construct the parser, which is ok here, but would be undecipherable for more complex parsers. The

rendering style is slightly different to the vanilla combinator as well, rendering in a tree shape as opposed

to using explicit entry/exit markers.

217

Detecting Left Recursion

Detecting Left Recursion

Left recursion is an issue that plagues recursive-descent parsing. Whenever a parser (eventually) performs

itself as the first thing it does, this will infinite loop and the parser will not terminate. While parsley has

been designed in a way that aims to statically rule out the more obvious left-recursive definitions, it is still

possible to indirectly write these parsers. The parsley-debug library provides functionality to help track

down the sources of such issues at runtime when provided with an input known to loop.


Please see the @parsley.debuggable page first, as this is used to provide meaningful names for

this functionality.

The combinator we are interested in is called parsley.debug.combinator.detectDivergence, which

wraps the top-level parser.

import parsley.quick.*
//import parsley.debuggable
import parsley.debug.combinator.detectDivergence

@debuggable
object parsers {
 lazy val top: Parsley[Unit] = p.void // simplifies the cycle, see #247
 lazy val p: Parsley[Unit] = char('a').void | s ~> q
 lazy val q: Parsley[Unit] = sepBy1(r, string(",")).void
 lazy val r: Parsley[Unit] = many(p).void
 lazy val s: Parsley[Unit] = unit
}

While parsers.top.parse("a") would work fine, consider what happens if we pass the empty string:

detectDivergence(parsers.top).parse("")
// parsley.exceptions.ParsleyException:
// Left-recursion has been detected in the given parser. The trace is as
 follows:
//
// p
// q
// r
// p
//
// For readability, all non-named combinators have been stripped out -- to see
 more,
// use the `named` combinator to tag parts of the parser you want to see appear
 in
// the trace.

218

Detecting Left Recursion

//
// at repl.MdocSession$MdocApp.$init$$$anonfun$1(recursion-detection.md:38)

Thankfully, the detectDivergence combinator can detect that this will cause an issue, and provides some

insight into what that might be. If you follow that trace out carefully, you'll see that these four calls form a

cycle where no input is consumed before you get back to the start again: this is what causes left-recursion.

Looping vs Recursion

Divergence is a property that is more general than just left-recursion. In fact, some combinators can more

accurately iteratively "loop" forever. One such case is as follows:

detectDivergence(many(unit)).parse("")
// parsley.exceptions.ParsleyException:
// `many` is looping unproductively as `unit` can succeed having not consumed
 input.
//
// More precise names for the body and the loop can be sourced using
 @parsley.debuggable
// or the `named` combinator.
// at repl.MdocSession$MdocApp.$init$$$anonfun$2(recursion-detection.md:47)

The many combinator reads zero-or-more things. When given something that doesn't consume input, it will

succeed reading that parser, then loop back round and try to read it again. This is, as you might expect,

exactly where it left off last iteration. As such, detectDivergence can also detect this kind of looping as

well. While parsley implements many and friends more efficiently, in theory this is still left-recursion, it is

just called hidden left-recursion:

def many(p: Parsley[A]): Parsley[List[A]] = {
 lazy val rec: Parsley[List[A]] = p <::> rec | pure(Nil)
 rec
}

When p does not succeed having consumed input, rec will perform itself again from the same input point

-- this is left-recursion, even if p is "in the way".

Stateful Parsers

It is "easy" to detect that a parser is looping if the only state in the parser is the input -- if we get

back to the same place with no input consumed we will most certainly repeat that forever. However,

parsley.state gives us access to mutable pieces of state threaded through a parser. This adds an

additional complication that makes static analysis of parser divergence more intractible. However, the

219

Detecting Left Recursion

detectDivergence combinator is a runtime analysis, and so has access to the state to track what's going

on. This means it is able to detect more complex looping that involves Ref:

import parsley.quick.*
//import parsley.debuggable
import parsley.state.*

@debuggable
object stateful {
 val toggle = Ref.make[Boolean]
 val counter = Ref.make[Int]
 lazy val p: Parsley[Unit] = counter.update(_ + 1) ~> ifS(counter.gets(_
 == 10), counter.set(0) ~> q, p)
 lazy val q: Parsley[Unit] = toggle.update(!_) ~> p
 lazy val top = toggle.set(false) ~> counter.set(0) ~> p
}

This parser is a contrived example, admittedly, but illustrates what detectDivergence is capable of. The

parser top runs in the presence of two Refs: p will loop until the counter reaches 10, when it will reset it and

execute q one time. q flips the toggle, but then does p. With some thought, you might be able to identify

the cycle that will happen here:

import parsley.debug.combinator.detectDivergence
detectDivergence(stateful.top).parse("")
// parsley.exceptions.ParsleyException:
// Left-recursion has been detected in the given parser. The trace is as
 follows:
//
// p (with state (false, 0))
// p (with state (false, 1))
// p (with state (false, 2))
// p (with state (false, 3))
// p (with state (false, 4))
// p (with state (false, 5))
// p (with state (false, 6))
// p (with state (false, 7))
// p (with state (false, 8))
// p (with state (false, 9))
// q (with state (false, 0))
// p (with state (true, 0))
// p (with state (true, 1))
// p (with state (true, 2))
// p (with state (true, 3))
// p (with state (true, 4))
// p (with state (true, 5))
// p (with state (true, 6))
// p (with state (true, 7))
// p (with state (true, 8))

220

Detecting Left Recursion

// p (with state (true, 9))
// q (with state (true, 0))
// p (with state (false, 0))
//
// For readability, all non-named combinators have been stripped out -- to see
 more,
// use the `named` combinator to tag parts of the parser you want to see appear
 in
// the trace.
//
// at repl.MdocSession$MdocApp.$init$$$anonfun$3(recursion-detection.md:82)

Unfortunately, at the moment there is no way to name the references, but this is future work. Regardless,

this time, the cycle shows the state snapshots that lead to the loop in the parser; namely, when the counter

hits 0 again and the toggle is reset to false, we enter our initial state, and the parser is killed.

Obviously, if this were just an infinite loop of the form lazy val p: Parsley[Unit] =

counter.update(_ + 1) ~> p, then detectDivergence cannot detect this until counter overflows! The

system isn't fool proof, obviously, since this would mean solving the general halting problem, but it works

for any non-stateful parser and stateful parsers which repeat the same stateful behaviour.

Limitations

As you may have noticed in the above example with many, sometimes there may be a lack of information

about the naming of certain parsers (which can help pin-point where a problem arose from). Obviously,

the @parsley.debuggable annotation is meant to help with this, but it does not necessarily have visibility

over all parsers! Let's see where this might go wrong:

@debuggable
object nameless {
 val top = false.makeRef { r =>
 lazy val p: Parsley[Unit] = r.update(!_) ~> p
 p
 }
}

While we might expect this to work out much like the stateful example above, in reality we see this:

detectDivergence(nameless.top).parse("")
// parsley.exceptions.ParsleyException:
// Left-recursion has been detected in the given parser; however, there is not
// enough information to determine the cycle. To get the full cycle diagnostic,
// please use the `parsley.debuggable` annotation to populate the name
 information.
//
// For example, if your parsers are exposed (publically) in an object called
// `foo`, you should write:

221

Detecting Left Recursion

//
// > @parsley.debuggable object foo { ... }
//
// Alternatively, you can give individual parser fragments names by using the
// `named` combinator, which will cause them to appear along the path.
//
// at repl.MdocSession$MdocApp.$init$$$anonfun$4(recursion-detection.md:109)

Unfortunately, the annotation cannot see into nested definitions, only top-level ones. In this case, we can

use the named combinator from parsley.debug.combinator to explicitly name p (via named(p, "p")),

or you may be able to get away with something like:

@debuggable
class Nested(r: Ref[Boolean]) {
 lazy val p: Parsley[Unit] = r.update(!_) ~> p
}

@debuggable
object nameful {
 val top = false.makeRef(r => Nested(r).p)
}

However, this is remarkably clumsy to use in practice (please don't)!

222

Getting Started

Getting Started

Parsley can be added to your project by one of the following configuration commands.

// SBT
libraryDependencies += "com.github.j-mie6" %% "parsley" % "4.6.0"

// scala-cli
--dependency com.github.j-mie6::parsley:4.6.0
// or in file
//> using dep com.github.j-mie6::parsley:4.6.0

// mill
ivy"com.github.j-mie6::parsley:4.6.0"

Alternatively, the most up-to-date development pre-release is 5.0.0-M18 and the most bleeding-edge

snapshot is 5.0-3a9fab4-SNAPSHOT.

Examples

Parsley can leverage string and character literals in Scala by implicit conversions, keeping the description

of the parser uncluttered:

import parsley.Parsley
import parsley.syntax.character.given

val hello: Parsley[Unit] = ('h' ~> ("ello" | "i") ~> " world!").void
// hello: Parsley[Unit] = parsley.Parsley@676911d6
hello.parse("hello world!")
// res0: Result[String, Unit] = Success(())
hello.parse("hi world!")
// res1: Result[String, Unit] = Success(())
hello.parse("hey world!")
// res2: Result[String, Unit] = Failure((line 1, column 2):
// unexpected "ey"
// expected "ello"
// >hey world!
// ^^)

Combinators exist to collapse results efficiently for iterative parsers, allowing for concise definitions of

simple numbers:

223

Getting Started

import parsley.character.digit
val natural: Parsley[Int] = digit.foldLeft1(0)((n, d) => n * 10 + d.asDigit)
// natural: Parsley[Int] = parsley.Parsley@13d56371
natural.parse("0")
// res3: Result[String, Int] = Success(0)
natural.parse("123")
// res4: Result[String, Int] = Success(123)

224

	Home
	Structure
	Contributing

	FAQ
	What is the deal with "lazy" vs "strict" positions?
	Frequently Encountered Problems
	My parser seems to infinite loop and doesn't run, even with the debug combinator
	My parser seems to infinite loop and the debug combinator shows it spinning forever
	My parser throws a BadLazinessException, what gives!

	Cheatsheet
	Quick Documentation
	Basic Combinators
	Character Combinators
	Lifty Combinators
	Composite Combinators

	Building Values and ASTs
	Transforming a single value with map
	Combining multiple results with lift, <::>, and friends

	Understanding the API
	`parsley.Parsley`
	Class Parsley
	Running Parsers
	Altering Results
	Composing Parsers
	Sequencing
	Choice

	Filtering Results
	Reductions
	Special Methods

	Object Parsley
	Iterative Combinators

	`parsley.character`
	Character Primitives
	String Building
	Pre-Built Character Parsers

	`parsley.combinator`
	Iterative Combinators
	Separators

	Optional Combinators
	Conditional Combinators

	`parsley.templates`
	What are Parser Bridges?
	How to use
	PureParserBridge1[-T1, +R] through PureParserBridge22[-T1, .., -T22, +R]
	ParserSingletonBridge[+T]
	PureParserBridge0[+T]
	ErrorBridge

	Additional Use Cases
	Normalising or Disambiguating Data
	Enforcing Invariances

	When not to use

	`parsley.macros`
	Motivation
	The bridge Macro
	Default Parameters
	Metadata Parsing
	Polymorpic Bridges
	Error Messages

	Limitations

	`parsley.syntax`
	Implicit Conversions
	Improved Sequencing

	`parsley.position`
	Position Extraction
	Offset Extraction

	`parsley.state`
	References
	Persistence
	Using Persistence

	Long-Term State
	Matching Brackets
	Tail-Recursive Combinators
	Whitespace-Sensitive Languages

	Stateful Combinators

	`parsley.debug`
	Debugging Problematic Parsers (debug)
	Breakpoints
	Watching References

	Debugging Error Messages (debugError)
	Profiling Parser (Profiler)

	`parsley.expr`
	`chain`
	Binary Chains
	Unary Chains
	Ensuring an operator exists

	`infix`
	Binary Chains

	`precedence`
	Formulating Precedence
	Homogeneous Precedence
	Ops and Fixity
	Heterogeneous Precedence

	`parsley.token`
	`Lexer`
	Distinguishing Between "Lexeme" and "Non-Lexeme"
	Names and Symbols
	Lexer.{lexeme, nonlexeme}.names
	Lexer.{lexeme, nonlexeme}.symbol

	Lexer.{lexeme, nonlexeme} Numeric Parsers
	Examples of Configuration and Valid Literals

	Lexer.{lexeme, nonlexeme} Text Parsers
	Examples of Configuration and Valid Literals

	Lexer.lexeme.{enclosing, separators}
	Whitespace-Sensitive Languages and Lexer.space

	`descriptions`
	Diagram of Dependencies

	`errors`
	errors.ErrorConfig
	Configuring Labels and Explains
	Configuring Labels
	Adding Explanations

	Configuring Filtering
	Special Configuration
	Preventing Double-Dropped Zero
	Preventing Bad Characters in Literals

	`parsley.errors`
	`combinator`
	Failure Combinators
	The unexpected Combinator
	The fail Combinator

	Error Enrichment
	The label Combinator
	The explain Combinator
	The hide Combinator

	Error Adjustment Combinators
	The amend Combinator
	The entrench and dislodge Combinators
	The markAsToken Combinator

	`patterns`
	Verified Errors
	Preventative Errors

	`ErrorBuilder`
	Error Message Structure
	Vanilla Errors
	Specialised Errors

	The ErrorBuilder Typeclass
	Vanilla
	Specialised

	Constructing Test Errors

	`tokenextractors`
	Basic Extractors
	SingleChar
	MatchParserDemand
	TillNextWhitespace

	Lexer-backed Extraction

	Parser Combinator Tutorial
	Basics of Combinators
	1 Basic Combinators and Sequencing
	1.1 What ties char and item together
	1.2 Changing the result type
	1.3 Putting the pieces together: Building string
	1.3.1 Takeaways

	2 Choice and Handling Failure
	2.1 Alternatives
	2.2 Backtracking
	2.3 Lookahead
	2.3.1 Takeaways

	3 Interlude: Regex Parser Examples
	4 Recursive Context-Free Parsers
	4.1 Recursion via Laziness
	4.2 Example: Parsing Boolean Expressions
	4.3 Higher-Order Example: Defining many
	4.3.1 Takeaways

	5 What Next?

	Building Expression Parsers
	1 The Problem with Left-Recursion
	2 Using expr.chain
	3 Using expr.precedence
	3.1 Generalising precedence with GOps, SOps, and Levels
	3.1.1 Subtyped ASTs with SOps
	3.1.2 Non-Subtyped Heterogenous ASTs with GOps

	3.2 Path-Dependent Typing and Ops/SOps/GOps
	3.3 Afternote: Why (B, A) => B and B => B?

	Effective Whitespace Parsing
	1 Defining whitespace readers
	2 Lexemes
	3 A Problem with Scope

	Effective Lexing
	1 Keywords, Identifiers and Operators
	2 Using token.descriptions.LexicalDesc and token.Lexer

	The Parser Bridge Pattern
	1 The Parser Bridge Pattern
	2 Reducing Boilerplate with Generic Bridge Traits
	3 Singleton Bridge for Precedence Ops
	3.1 Abstracting Again
	3.2 Adding Errors

	4 The Final Parser

	Interlude 1: Building a Parser for Haskell
	1 Lexing
	2 The AST + Parser Bridge Pattern
	3 Parsing
	3.1 Atoms of the Expression
	3.2 Expressions
	3.3 Clauses
	3.4 Types
	3.5 Declarations and Data

	4 Optimising the Parser
	4.1 Fixing Parentheses Backtracking
	4.1.1 <pat-con>, <type-con>, and <term>
	4.1.2 <pat-naked>, <type-atom>, and <term> (again)
	4.1.3 Numbers in <literal>
	4.1.4 Loose ends

	5 Concluding Thoughts

	Customising Error Messages
	1 Adjusting Error Content
	1.1 Using label
	1.1.1 Using hide to trim away junk
	1.1.2 Labelling our numbers
	1.1.3 Merging multiple labels

	1.2 Wrapping up the Expression Example
	1.3 Using explain

	2 Adjusting Error Formatting

	Advanced Error Messages
	1 A Statement Language
	1.1 A Stateful Evaluator
	1.2 A Parser
	1.3 Motivation

	2 Verified Errors
	3 Preventative Errors
	4 Conclusion

	parsley-debug
	`@parsley.debuggable`
	How to use
	Scala 2 Woes

	Attaching Debugger Views
	DebugView
	attach and attachReusable

	Debug Views
	`PrintView`
	Configuration
	What does it look like?

	Detecting Left Recursion
	Looping vs Recursion
	Stateful Parsers
	Limitations

	Getting Started
	Examples

